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Abstract We use a canonical procedure associating to an algebraic number
a first a hyperelliptic curve Ca , and then a triangle curve (Da,Ga) obtained
through the normal closure of an associated Belyi function. In this way we
show that the absolute Galois group Gal(Q̄/Q) acts faithfully on the set of
isomorphism classes of marked triangle curves, and on the set of connected
components of marked moduli spaces of surfaces isogenous to a higher product
(these are the free quotients of a product C1 × C2 of curves of respective
genera g1, g2 ≥ 2 by the action of a finite group G). We show then, using
again the surfaces isogenous to a product, first that it acts faithfully on the
set of connected components of the moduli space of surfaces of general type
(amending an incorrect proof in a previous arXiv version of the paper); and
then, as a consequence, we obtain our main result: for each element σ ∈
Gal(Q̄/Q), not in the conjugacy class of complex conjugation, there exists a
surface of general type X such that X and the Galois conjugate surface Xσ

have nonisomorphic fundamental groups. Using polynomials with only two
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critical values, we can moreover exhibit infinitely many explicit examples of
such a situation.

1 Introduction

In the 60’s J. P. Serre showed in [19] that there exists a field automorphism
σ ∈ Gal(Q̄/Q), and a variety X defined over Q̄ such that X and the Galois
conjugate variety Xσ have non isomorphic fundamental groups, in particular
they are not homeomorphic.

In this note we give new examples of this phenomenon, using the so-called
‘surfaces isogenous to a product’ whose weak rigidity was proven in [7] (see
also [8]) and which by definition are quotients of a product of curves (C1 ×C2)
of respective genera at least 2 by the free action of a finite group G.

One of our main results is a strong sharpening of the phenomenon discovered
by Serre: observe in this respect that, if c denotes complex conjugation, then
X and Xc are diffeomorphic.

Theorem 1.1 (= Theorem 6.8.) If σ ∈ Gal(Q̄/Q) is not in the conjugacy class
of c, then there exists a surface isogenous to a product X such that X and the
Galois conjugate variety Xσ have non-isomorphic fundamental groups.

Moreover, we give some faithful actions of the absolute Galois group
Gal(Q̄/Q), related among them.

The following results are based on the concept of a (symmetry-) G-marked
variety. A G-marked variety is a triple (X,G, η)where X is a projective variety,
and η : G → Aut(X) is an injective homomorphism (one says also that we
have an effective action of the group G on X ): here two such triples (X,G, η),
(X ′,G, η′) are isomorphic iff there is an isomorphism f : X → X ′, such that
f carries the first action η to the second one η′ (i.e., such that η′ = Ad( f ) ◦ η,
where Ad( f )(φ) := f φ f −1). A particular case of marking is the one where
G ⊂ Aut(X) and η is the inclusion: in this case we may denote a marked
variety simply by the pair (X,G).

Theorem 1.2 (= Theorem 4.6.) There is an action of Aut(C) on the set of iso-
morphism classes of marked triangle curves obtained by taking the conjugate
by an automorphism σ ∈ Aut(C). This action factors through an action of
Gal(Q̄/Q). If a ∈ Q̄ \ Z and the isomorphism class of the marked triangle
curve (Da,Ga) is fixed by σ ∈ Gal(Q̄/Q), then σ(a) = a; in particular, the
above action is faithful.

Theorem 1.3 (= Theorem 5.8.) The absolute Galois group Gal(Q̄/Q) acts
faithfully on the set of connected components of the (coarse) moduli space of
étale marked surfaces of general type.
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Absolute Galois acts faithfully on moduli 861

With a rather elaborate strategy we can then show the stronger result:

Theorem 1.4 (= Theorem 6.4.)The absolute Galois group Gal(Q̄/Q) acts
faithfully on the set of connected components of the (coarse) moduli space
M of surfaces of general type.

Our method is closely related to the theorem of Belyi [5], which motivated
the so-called theory of ‘dessins d’ enfants’ (see [17]); these are, in view of
Riemann’s existence theorem (generalized by Grauert and Remmert in [15]),
a combinatorial way to look at the monodromies of algebraic functions with
only three branch points. We make in this paper an essential use of Belyi
functions [5] and of their functoriality. Our point of view is however more
related to the normal closure of Belyi functions, the so called marked triangle
curves, i.e., pairs (C,G) with G ⊂ Aut(C) such that the quotient C/G ∼= P1

and the quotient map is branched exactly in three points.
In the first section we describe a simple but canonical construction which,

for each choice of an integer g ≥ 3, associates to a complex number a ∈ C\Q

a hyperelliptic curve Ca of genus g, and in such a way that Ca
∼= Cb iff a = b.

In the later sections we construct the associated triangle curves (Da,Ga)

and prove the above theorems.
It would be interesting to obtain similar types of results, for instance for-

getting about the markings in the case of triangle curves, or even using only
Beauville surfaces (these are the surfaces isogenous to a product which are
rigid: see [7] for the definition of Beauville surfaces and [2,3,8] for further
properties of these).

Theorem 6.4 was announced by the second author at the Alghero Conference
‘Topology of algebraic varieties’ in September 2006, and asserted (with an
incorrect proof) in the previous ArXiv version of the paper [4]. The survey
article [10] was then written after we realized of the gap in the proof. The
results of the present article give in our opinion support to some conjectures
made previously (see [4,10]).

The main new input of the present paper is the systematic use of twists of
the second component of an action on a product C1 × C2 by an automorphism
of the group G and the discovery that this leads to an injective homomorphism
of the Kernel K of the action (on the set of connected components π0(M) of
the moduli space of surfaces of general type) into some Abelian group of the
form ⊕G(Z(Out(G)), Z denoting the centre of a group. Then we use a known
result (cf. [12]) that Gal(Q̄/Q) does not contain any nontrivial normal abelian
subgroup.

Observe that Robert Easton and Ravi Vakil (in [11]), with a completely
different type of examples, obtained a result which is weaker than Theorem
6.4, they showed indeed that the Galois group Gal(Q̄/Q) operates faithfully on
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the set of irreducible components of the moduli spaces of surfaces of general
type.

In the last section we use Beauville surfaces and polynomials with two
critical values in order to produce infinitely many explicit and simple examples
of pairs of surfaces of general type with nonisomorphic fundamental groups
which are conjugate under the absolute Galois group (observe in particular
that the two fundamental groups have then isomorphic profinite completions).

2 Very special hyperelliptic curves

Fix a positive integer g ∈ N, g ≥ 3, and define, for any complex number
a ∈ C \ {−2g, 0, 1, . . . , 2g − 1}, Ca as the hyperelliptic curve of genus g
which is the smooth complete model of the affine curve of equation

w2 = (z − a)(z + 2g)�2g−1
i=0 (z − i).

Ca is the double covering of P1
C

branched over {−2g, 0, 1, . . . , 2g−1, a} ⊂
P1

C
. We can define more generally, for each a ∈ C, the complete curve Ca as the

subscheme of the weighted projective plane P(1, 1, g + 1), with coordinates
(z0, z1, w), defined by the equation

w2 = (z1 − az0)(z1 + 2gz0)�
2g−1
i=0 (z1 − i z0).

Ca is smooth if and only if a ∈ C \ {−2g, 0, 1, . . . , 2g − 1}. We shall call
such a smooth curve Ca a very special hyperelliptic curve.

Proposition 2.1 (1) Consider two complex numbers a, b such that a ∈ C\Q:
then Ca

∼= Cb if and only if a = b.
(2) Assume now that g ≥ 6 and let a, b ∈ C \ {−2g, 0, 1, . . . , 2g − 1} be two

complex numbers. Then Ca
∼= Cb if and only if a = b.

Proof One direction being obvious, assume that Ca
∼= Cb.

Then the isomorphism between Ca and Cb induces a projectivity ϕ : P1
C

→
P1

C
making the two sets with 2g+2 elements Ba := {−2g, 0, 1, . . . , 2g−1, a}

and Bb := {−2g, 0, 1, . . . , 2g−1, b} projectively equivalent over C (the latter
set Bb has also cardinality 2g + 2 since Ca

∼= Cb and Ca smooth implies that
also Cb is smooth).

In fact, the projectivity ϕ : P1
C

→ P1
C

taking Ba to Bb is defined over Q,
since there are three rational numbers which are carried into three rational
numbers (because g ≥ 2).

(1) Since a /∈ Q it follows that ϕ(a) /∈ Q hence ϕ(a) = b /∈ Q and ϕ
maps B := {−2g, 0, 1, . . . 2g − 1} to B, and in particular ϕ has finite order.

123



Absolute Galois acts faithfully on moduli 863

Since ϕ yields an automorphism of P1
R

, it either leaves the cyclic order of
(−2g, 0, 1, . . . , 2g − 1) invariant or reverses it, and since g ≥ 3 we see that
there are three consecutive integers such that ϕ maps them to three consecutive
integers. Therefore ϕ is either an integer translation, or an affine symmetry of
the form x 
→ −x +2n, where 2n ∈ Z. In the former case ϕ = id, since it has
finite order, and it follows in particular that a = b. In the latter case it must be
2g + 2n = ϕ(−2g) = 2g − 1 and 2n = ϕ(0) = 2g − 2, and we derive the
contradiction −1 = 2n = 2g − 2.

(2) Since we dealt with the case a /∈ Q in 1), and by symmetry with the
case b /∈ Q, we may and do assume that a, b ∈ Q.

Step I) We prove first that ϕ(x) = ±x + r where r ∈ Z.
Observe in fact that in the set Bb each triple of consecutive points (for

the cyclic order) is a triple of consecutive integers, if no element in the
triple is −2g or b. This excludes at most six triples. Keep in mind that
a ∈ Ba and consider all the triples of consecutive integers in the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}: at most two such triples are not a triple of
consecutive points of Ba [if i < a < i + 1, then the triples are (i − 1, i, i + 1)
and (i, i + 1, i + 2)]. We conclude that there is a triple of consecutive integers
in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} mapping to a triple of consecutive
integers under ϕ (we have in fact at least 10 − 2 = 8 such triples which are
triples of consecutive points of Ba and we exclude at most 6 image triples of
consecutive points in Bb which are not a triple of consecutive integers). Then
either ϕ is an integer translation x 
→ x +n, or it is a symmetry x 
→ −x +2n
with 2n ∈ Z.

Claim II: ϕ(x) = ±x + r ⇒ a = b.
First proof of claim II:

If ϕ(x) = x + r , then Bb contains {r, . . . , (2g − 1)+ r} and either

(1) r = 0 and ϕ = id (hence a = b)
(2) r = 1, Bb contains 2g and −2g + 1, a contradiction, or
(3) r = −1, Bb contains −1 and −2g − 1, a contradiction.

Similarly, if ϕ(x) = −x + r , Bb contains {r − (2g − 1), . . . , r} and either

(1) r = 2g − 1 and a = b = 4g − 1 or
(2) r = 2g, Bb contains 2g and 4g, a contradiction, or
(3) r = 2g − 2, Bb contains −1 and 4g − 2, a contradiction.

�

Second proof of claim II:

In both cases the intervals equal to the respective convex spans of the sets
Ba , Bb are sent to each other by ϕ, in particular the length is preserved and the
extremal points are permuted. If a ∈ [−2g, 2g − 1] also b ∈ [−2g, 2g − 1]
and in the translation case r = 0, so that ϕ(x) = x and a = b. We see right
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away that ϕ cannot be a symmetry, because only two points belong to the left
half of the interval.

If a < −2g the interval has length 2g − 1 − a, if a > 2g − 1 the interval
has length 2g + a. Hence, if both a, b < −2g, since the length is preserved,
we find that a = b; similarly if a, b > 2g − 1.

By symmetry of the situation, we only need to exclude the case a < −2g,
b > 2g − 1: here we must have 2g − 1 − a = 2g + b, i.e., a = −b − 1. If ϕ
is a symmetry then b = ϕ(a), and we derive the same contradiction as in 1),
since then ϕ(−2g) = 2g + r = 2g − 1 ⇒ r = −1, hence ϕ(0) = −1 /∈ Bb,
absurd. If instead we have a translation ϕ(x) = x + r , since ϕ(2g − 1) = b,
ϕ(2g − 2) = 2g − 1, it follows that r = 1, and then ϕ(−2g) = −2g + 1 gives
a contradiction. �


We shall assume from now on that a, b ∈ Q̄ \ Q and that there is a field
automorphism σ ∈ Gal(Q̄/Q) such that σ(a) = b. (Obviously, for any σ ∈
Gal(Q̄/Q) different from the identity, there are a, b ∈ Q̄ \ Q with σ(a) = b
and a �= b.)

The following is an application of Belyi’s celebrated theorem asserting that
an algebraic curve C can be defined over Q̄ if and only if it admits a Belyi
function, i.e., a holomorphic function f : C → P1 whose only critical values
are in the set {0, 1,∞}. The main assertion concerns the functoriality of a
certain Belyi function.

Proposition 2.2 Let a ∈ Q̄, let P ∈ Q[x] be the minimal polynomial of a,
and consider the field L := Q[x]/(P). Let Cx be the hyperelliptic curve over
Spec(L) defined by the equation

w2 = (z1 − xz0)(z1 + 2gz0)�
2g−1
i=0 (z1 − i z0).

Then there is a rational function Fx : Cx → P1
L such that, for each a ∈ C with

P(a) = 0, the rational function Fa (obtained under the specialization x 
→ a)
is a Belyi function for Ca.

Proof Let fx : Cx → P1
L be the hyperelliptic quotient map, branched in

{−2g, 0, 1, . . . , 2g − 1, x}. Then P ◦ fx has as critical values:

• the images of the critical values of fx under P , which are in Q,
• the critical values y of P , i.e. the zeroes of the discriminant h1(y) of

P(z)− y with respect to the variable z.

Since h1 has degree deg(P) − 1, we obtain, inductively as in [5], f̃x :=
h ◦ P ◦ f whose critical values are all contained in Q∪{∞} (see [21] for more
details). If we take any root a of P , then obviously f̃a has the same critical
values as f̃x .
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Let now r1, . . . , rn ∈ Q be the (pairwise distinct) finite critical values of
f̃x . We set:

yi := 1

� j �=i (ri − r j )
.

Let N ∈ N be a positive integer such that mi := N yi ∈ Z. Then the rational
function

g(t) := �i (t − ri )
mi ∈ Q(t)

is ramified at most in ∞ and r1, . . . rn . In fact, g′(t) vanishes at most when
g(t) = 0 or at the points where the logarithmic derivative G(t) := g′(t)

g(t) =
∑

i mi (
1

t−ri
) has a zero. However, G(t) has simple poles at the n points

r1, . . . , rn and by the choice made we claim that it has a zero of order n
at ∞.

In fact, consider the polynomial 1
N G(t)�i (t −ri ), which has degree ≤ n−1

and equals

∑

i

yi� j �=i (t − r j ) =
∑

i

� j �=i (t − r j )
1

� j �=i (ri − r j )
.

It takes value 1 in each of the points r1, . . . rn , hence it equals the constant 1.
It follows that the critical values of g ◦ f̃x are at most 0, ∞, g(∞).
We set Fx := � ◦ g ◦ f̃x where � is the affine map z 
→ g(∞)−1z, so that

the critical values of Fx are equal to {0, 1,∞}. It is obvious by our construction
that for any root a of P , Fa has the same critical values as Fx , in particular,
Fa is a Belyi function for Ca . �


Since in the sequel we shall consider the normal closure (we prefer here, to
avoid confusion, not to use the term ’Galois closure’ for the geometric setting)
ψa : Da → P1

C
of each of the functions Fa : Ca → P1

C
, we recall in the next

section the ‘scheme theoretic’ construction of the normal closure.

3 Effective construction of normal closures

In this section we consider algebraic varieties over the complex numbers,
endowed with their Hausdorff topology, and, more generally, ‘good’ covering
spaces (i.e., between topological spaces which are locally arcwise connected
and semilocally simply connected).

Lemma 3.1 Let π : X → Y be a finite ‘good’ unramified covering space of
degree d between connected spaces X and Y .
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Then the normal closure Z of π : X → Y (i.e., the minimal unramified
covering of Y factoring through π , and such that there exists an action of a
finite group G with Y = Z/G) is isomorphic to any connected component of

W := Wπ := (X ×Y . . .×Y X)\
 ⊂ Xd\
,

where 
 := {(x1, . . . , xd) ∈ Xd |∃i �= j , xi = x j } is the big diagonal (also
called ‘fat diagonal’).

Proof Choose base points x0 ∈ X , y0 ∈ Y such that π(x0) = y0 and denote
by F0 the fibre over y0, F0 := π−1({y0}).

We consider the monodromy μ : π1(Y, y0) → Sd = S(F0) of the unram-
ified covering π . The monodromy of φ : W → Y is induced by the diagonal
product monodromy μd : π1(Y, y0) → S(Fd

0 ), such that, for (x1, . . . , xd) ∈
Fd

0 , we have μd(γ )(x1, . . . , xd) = (μ(γ )(x1), . . . , μ(γ )(xd)).
Observe that the points of W ∩ Fd

0 are just sequences of d distinct points
(x1, . . . , xd) in F0: hence, once we choose a bijection of F0 with the set
{1, 2, . . . , d}, i.e., a base point (ξ1, . . . , ξd) ∈ W ∩ Fd

0 , then to (x1, . . . , xd)

we associate the permutation such that ξi 
→ xi ,∀i . We obtain in this way an
identification of W ∩ Fd

0 with Sd .
It follows that the monodromy of φ : W → Y , μW : π1(Y, y0) → S(Sd)

is given by left translation μW (γ )(τ ) = μ(γ ) ◦ (τ ).
If we denote by G := μ(π1(Y, y0)) ⊂ Sd the monodromy group, it follows

right away that the components of W correspond to the cosets Gτ of G. Thus
all the components yield isomorphic covering spaces. �


The theorem of Grauert and Remmert [15] allows to extend the above con-
struction to yield normal closures of finite morphisms between normal alge-
braic varieties. 1

Corollary 3.2 Letπ : X → Y be a finite morphism between normal projective
varieties, let B ⊂ Y be the branch locus of π and set X0 := X \ π−1(B),
Y 0 := Y \ B.

If X is connected, then the normal closure Z of π is isomorphic to any
connected component of the closure of W 0 := (X0 ×Y 0 . . .×Y 0 X0)\
 in the
normalization W n of W := (X ×Y . . .×Y X) \
.

Proof The irreducible components of W correspond to the connected com-
ponents of W 0, as well as to the connected components Z of W n . So, our
component Z is the closure of a connected component Z0 of W 0. We know

1 A referee pointed out that the geometric construction of the normal closure is also carefully
described in Proposition 5.3.9 of [20].

123



Absolute Galois acts faithfully on moduli 867

that the monodromy group G acts on Z0 as a group of covering transforma-
tions and simply transitively on the fibre of Z0 over y0: by normality the action
extends biholomorphically to Z , and clearly Z/G ∼= Y . �


4 Faithful action of the absolute Galois group on the set of marked
triangle curves (associated to very special hyperelliptic curves)

Let a be an algebraic number, g ≥ 3, and consider as in Sect. 2 the hyperelliptic
curve Ca of genus g defined by the equation

w2 = (z − a)(z + 2g)�2g−1
i=0 (z − i).

Let Fa : Ca → P1 be the Belyi function constructed in Proposition 2.2 and
denote by ψa : Da → P1 the normal closure of Ca as in Corollary 3.2.

Remark 4.1 (1) We denote by Ga the monodromy group of Da and observe
that there is a subgroup Ha ⊂ Ga acting on Da such that Da/Ha

∼= Ca .

(2) Observe moreover that the degree d of the Belyi function Fa depends not
only on the degree of the field extension [Q(a) : Q], but much more on
the height of the algebraic number a; one may give an upper bound for
the order of the group Ga in terms of these.

The pair (Da,Ga) that we get is a so-called triangle curve (see [8], page
539). We need here the following refined definition:

Definition 4.2 (1) A G-marked variety is a triple (X,G, η) where X is a pro-
jective variety and η : G → Aut(X) is an injective homomorphism

(2) equivalently, a marked variety is a triple (X,G, α)where α : X × G → X
is a faithful action of the group G on X

(3) Two marked varieties (X,G, α), (X ′,G, α′) are said to be isomorphic if
there is an isomorphism f : X → X ′ transporting the action α : X ×G →
X into the action α′ : X ′ × G → X ′, i.e., such that

f ◦ α = α′ ◦ ( f × id) ⇔ η′ = Ad( f ) ◦ η, Ad( f )(φ) := f φ f −1.

(4) If G is a subset of Aut(X), then the natural marked variety is the triple
(X,G, i), where i : G → Aut(X) is the inclusion map, and shall some-
times be denoted simply by the pair (X,G).

(4) A marked curve (D,G, η) consisting of a smooth projective curve of genus
g and a faithful action of the group G on D is said to be a marked triangle
curve of genus g if D/G ∼= P1 and the quotient morphism p : D →
D/G ∼= P1 is branched in three points.
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Remark 4.3 Observe that:

(1) we have a natural action of Aut(G) on marked varieties, namely

ψ(X,G, η) := (X,G, η ◦ ψ−1).

The corresponding equivalence class of a G-marked variety is defined to
be a G-(unmarked) variety.

(2) The action of the group Inn(G) of inner automorphisms does not change
the isomorphism class of (X,G, η) since, for γ ∈ G, we may set f :=
(η(γ )), ψ := Ad(γ ), and then η ◦ ψ = Ad( f ) ◦ η, since η(ψ(g)) =
η(γ gγ−1) = η(γ )η(g)(η(γ )−1) = Ad( f )(η(g)).

(3) In the case where G = Aut(X), we see that Out(G) acts simply transitively
on the isomorphism classes of the Aut(G)-orbit of (X,G, η).

Consider now our triangle curve Da: we showed in proposition 2.2 that the
three branch points in P1 are {0, 1,∞} and we may choose a monodromy
representation

μ : π1(P
1 \ {0, 1,∞}) → Ga

corresponding to the normal ramified covering ψa : Da → P1. Denote further
by τ0, τ1, τ∞ the images of geometric loops around 0, 1, ∞ . Then Ga
is generated by τ0, τ1, τ∞ and τ0 · τ1 · τ∞ = 1. By Riemann’s existence
theorem the datum of these three generators of the group Ga determines a
marked triangle curve (see for instance [7], page 24, or [8], Definition 2.1 on
page 544, or, for a more extensive treatment, Section 2 of [2]).

We recall the operation of conjugating a variety by a field automorphism.

Remark 4.4 (1) σ ∈ Aut(C) acts on C[z0, . . . zn], by sending the element
P(z) = ∑

I=(i0,...,in)
aI z I to

σ(P)(z) :=
∑

I=(i0,...,in)

σ (aI )z
I .

(2) Let X be a projective variety

X ⊂ Pn
C
, X := {z| fi (z) = 0 ∀i}.

The action ofσ extends coordinatewise to Pn
C

, and carries X to the setσ(X)
which is another variety, denoted Xσ , and called the conjugate variety. In
fact, since fi (z) = 0 if and only if σ( fi )(σ (z)) = 0, one has that

Xσ = {w|σ( fi )(w) = 0 ∀i}.
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(3) if f : X → Y is a morphism, its graph � f being a subscheme of X × Y ,
we get a conjugate morphism f σ : Xσ → Y σ .

(4) if G ⊂ Aut(X), and i : G → Aut(X) is the inclusion, then σ determines
another marked variety (Xσ ,G,Ad(σ ) ◦ i), image of (X,G, i).

In other words, we have Gσ ⊂ Aut(Xσ ) in such a way that, if we identify
G with Gσ via Ad(σ ), then (X/G)σ ∼= Xσ /G.

In a similar concrete way we can define the σ -conjugate variety Xσ of a
quasi-projective variety, except that, in order to show that the definition is
independent of the given embedding, one is forced to give the following more
abstract definition matching with the previously given one for quasi-projective
varieties.

Definition 4.5 Let σ : C → C be a field automorphism. We introduce then
the functor from the category of complex varieties to itself defined by

Xσ := X ⊗C,σ C,

which satisfies the following properties:

(i) if X is defined over a subfield k0 ⊂ C, i.e., there is a k0-scheme X0 such
that X ∼= X0 ⊗k0 C, then Xσ depends only on the restriction σ |k0 and if
moreover σ is the identity on k0, then Xσ is canonically isomorphic to
X ;

(ii) the formation of Xσ is compatible with products;
(iii) for a group action G × X → X with G finite (hence defined over Q as an

algebraic group) then Gσ = G canonically and applying the conjugation
functor gives a conjugate action G × Xσ = Gσ × Xσ → Xσ .

To any algebraic number a /∈ Z there corresponds, through a canonical
procedure (depending on an integer g ≥ 3), a marked triangle curve (Da,Ga).
We can prove now the following:

Theorem 4.6 There is an action of Aut(C) on the set of isomorphism classes of
marked triangle curves obtained by taking the conjugate by an automorphism
σ ∈ Aut(C). This action factors through an action of Gal(Q̄/Q). If a ∈ Q̄ \ Z

and the isomorphism class of the marked triangle curve (Da,Ga) is fixed by
σ ∈ Gal(Q̄/Q), then σ(a) = a; in particular, the above action is faithful.

Proof Let (D,G) be a marked triangle curve, and σ ∈ Gal(Q̄/Q): extend σ to
σ ∈ Gal(C/Q) and take the transformed curve Dσ and the transformed graph
of the action, a subset of Dσ × Dσ × G.

Since there is only a finite number of isomorphism classes of such pairs
(D,G) of a fixed genus g and with fixed group G, it follows that D is defined
over Q̄ and the chosen extension of σ does not matter up to isomorphism.
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Finally, apply the action of σ to the triangle curve (Da,Ga) and assume that
the isomorphism class of (Da,Ga) is fixed by the action. This means then,
setting b := σ(a), that there is an isomorphism

f : Da → Db = Dσ(a) = Dσ
a

such that Ad( f ) = Ad(σ ).
In other words, σ identifies Ga with Gb by our assumption and the two

actions of Ga on Da and Db are transported to each other by f . �


Lemma 4.7 Ad(σ )(Ha) = Hb.

Proof of the Lemma Let K be the Galois closure of the field L introduced in
proposition 2.2 (K is the splitting field of the field extension Q ⊂ L), and
view L as embedded in C under the isomorphism sending x to a.

Consider the curve Ĉx obtained from Cx by scalar extension Ĉx := Cx⊗L K .
Let also F̂x := Fx ⊗L K be the corresponding Belyi function with values in
P1

K .
Apply now the effective construction of the normal closure of Sect. 3: hence,

taking a connected component of (Ĉx ×
P

1
K
. . .×

P
1
K

Ĉx ) \
 we obtain a curve
Dx defined over K .

Note that Dx is not geometrically irreducible, but, once we tensor with C,
it splits into several components which are Galois conjugate and which are
isomorphic to the conjugates of Da .

Apply now the Galois automorphism σ to the triple Da → Ca → P1. Since
the triple is induced by the triple Dx → Cx → P1

K by taking a tensor product
⊗K C via the embedding sending x to a, and the morphisms are induced by
the composition of the inclusion Dx ⊂ (Cx )

d with the coordinate projections,
respectively by the fibre product equation, it follows from Proposition 2.2 that
σ carries the triple Da → Ca → P1 to the triple Db → Cb → P1. �


Since Ad( f ) = Ad(σ ), under the isomorphism f the subgroup Ha corre-
sponds to the subgroup Hb (i.e., Ad( f )(Ha) = Hb).

We infer that, since Ca = Da/Ha , Cb = Db/Hb, f induces an isomorphism
of Ca with Cb.

By Proposition 2.2 we conclude that a = b.
If we want to interpret our argument in terms of Grothendieck’s étale fun-

damental group, we define C0
x := F−1

x (P1 \ {0, 1,∞}), and accordingly Ĉ0
x

and D0
x .

There are the following exact sequences for the Grothendieck étale funda-
mental group (compare Theorem 6.1 of [16]):
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1 → π
alg
1 (D0

a) → π
alg
1 (D0

x ) → Gal(Q̄/K ) → 1

1 → π
alg
1 (C0

a ) → π
alg
1 (Ĉ0

x ) → Gal(Q̄/K ) → 1

1 → π
alg
1 (P1

C
\ {0, 1,∞}) → π

alg
1 (P1

K \ {0, 1,∞}) → Gal(Q̄/K ) → 1

where Ha and Ga are the respective factor groups for the (vertical) inclusions of
the left hand sides, corresponding to the first and second sequence, respectively
to the first and third sequence.

On the other hand, we also have the exact sequence

1 → π
alg
1 (P1

C
\ {0, 1,∞}) → π

alg
1 (P1

Q
\ {0, 1,∞}) → Gal(Q̄/Q) → 1.

The finite quotient Ga of πalg
1 (P1

C
\ {0, 1,∞}) (defined over K ) is sent by

σ ∈ Gal(Q̄/Q) to another quotient, corresponding to Dσ(a), and the subgroup
Ha , yielding the quotient Ca , is sent to the subgroup Hσ(a).

Remark 4.8 Assume that the two triangle curves Da and Db = Dσ(a) are
isomorphic through a complex isomorphism f : Da → Db (but without
that necessarily ( f,Ad(σ )) yields an isomorphism of marked triangle curves
(Da,Ga), (Db,Gb)).

We define ψ : Ga → Ga to be equal to ψ := Ad(σ−1 ◦ f ).
Then Ad( f ) = Ad(σ ) ◦ ψ and applying to y ∈ Db, y = f (x) we get

Ad( f )(g)(y) = (Ad(σ ) ◦ ψ)(g)(y) ⇔ f (g(x)) = (Ad(σ ) ◦ ψ)(g)( f (x)).

Identifying Ga with Gb under Ad(σ ), one can interpret the above formula
as asserting that f is only ‘twisted’ equivariant ( f (g(x))“ =′′ ψ(g)( f (x)).

Proposition 4.9 Assume that the two triangle curves Da and Db = Dσ(a) are
isomorphic under a complex isomorphism f and that the above automorphism
ψ ∈ Aut(G) such that f (g(x)) = (Ad(σ ) ◦ ψ)(g)( f (x)) is inner.

Then Ca
∼= Cb, hence a = b.

Proof If ψ is inner, then the marked triangle curves (Da,Ga) = (Da,Ga, ia)

(ia being the inclusion map of Ga ⊂ Aut(Da)), and its transform by σ ,
(Db,Gσ

a ) = (Db,Ga,Ad(σ ) ◦ ia) are isomorphic.
Then the argument of Theorem 4.6 implies that Ca

∼= Cb, hence a = b. �

We pose here the following conjecture, which is a strengthening of the

previous Theorem 4.6.

Conjecture 4.10 (Conjecture 2.13 in [10]) The absolute Galois group
Gal(Q̄/Q) acts faithfully on the set of isomorphism classes of (unmarked)
triangle curves.

The following definition will be useful in the proof of Theorem 6.4.
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Definition 4.11 Let a ∈ Q̄ be an algebraic number and let (Da,Ga) be the
associated marked triangle curve obtained by the canonical procedure above
(depending on an integer g ≥ 3). Then (Da,Aut(Da)) is called the fully
marked triangle curve associated to a (it is a triangle curve by rigidity, see [8],
page 545).

Remark 4.12 If we consider instead of (Da,Ga) the fully marked triangle
curve (Da,Aut(Da)) we have also the subgroup Ha ≤ Aut(Da) such that
Da/Ha = Ca , where Ca is the very special hyperelliptic curve associated to
the algebraic number a.

The same proof as the proof of Theorem 4.6 gives

Proposition 4.13 The action of Gal(Q̄/Q) on the set of isomorphism classes of
marked triangle curves, obtained by taking the conjugate by an automorphism
σ , preserves fully marked triangle curves. The action on the set of isomorphism
classes of fully marked triangle curves is faithful.

5 Connected components of moduli spaces associated to very special
hyperelliptic curves

Let us recall now the basic definitions underlying our next construction: the
theory of surfaces isogenous to a product, introduced in [7] (see also [8]), and
which holds more generally for varieties isogenous to a product.

Definition 5.1 (1) A surface isogenous to a (higher) product is a compact
complex projective surface S which is a quotient S = (C1 × C2)/G of a
product of curves of resp. genera g1, g2 ≥ 2 by the free action of a finite
group G. It is said to be unmixed if the embedding i : G → Aut(C1 × C2)

takes values in the subgroup Aut(C1)× Aut(C2) (which has index at most
two, see e.g. [7], cor. 3.9).

(2) A Beauville surface is a surface isogenous to a (higher) product which
is rigid, i.e., it has no nontrivial deformation. In the unmixed case, S is
Beauville if and only if, for i = 1, 2, (Ci ,G) is a triangle curve (see for
instance [8], page 552).

(3) An étale marked surface is a triple (S′,G, η) where S′ is a smooth pro-
jective surface such that the action of G is without fixed points. An étale
marked surface can also be defined as a quintuple (S, S′,G, η, F) where
η : G → Aut(S′) is a faithful free action, and F : S → S′/G is an iso-
morphism.

Observe that, once a base point y ∈ S is fixed, a surjection of the fundamental
group r : π1(S, y) → G determines an étale marked surface. Conversely, the
marking provides the desired surjection r . Moving the base point y around
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amounts to replacing r with the composition r ◦ Ad(γ ), for γ ∈ π1(S, y).
However,

(r ◦ Ad(γ ))(δ) = r(γ δγ−1) = (Ad(r(γ )) ◦ r)(δ).

Therefore we see that, if we want to get rid of the dependence on the base
point, we have to divide by the group Inn(G) acting on the left.

In this case an associated subgroup of the covering (a subgroup of π1(S, y)
of the form p∗(π1(S′, z)), p : S′ → S being the projection, and where
p(z) = y) is a normal subgroup, independent of the choice of a base point
z above y; however, the corresponding isomorphism of the quotient group
π1(S, y)/p∗(π1(S′, z)) with G changes with y, and as a result the epimor-
phism r is modified by an inner automorphism of G. Moreover the action of
nontrivial elements in Out(G) := Aut(G)/ Inn(G)may transform the marking
into a non isomorphic one.

Remark 5.2 Consider the coarse moduli space Mx,y of canonical models of
surfaces of general type X with χ(OX ) = x, K 2

X = y. Gieseker [13] proved
that Mx,y is a quasi-projective variety.

We denote by M the disjoint union ∪x,y≥1Mx,y , and we call it the moduli
space of surfaces of general type.

Fix a finite group G and consider the moduli space M̂G
x,y for étale marked

surfaces (X, X ′,G, η, F), where the isomorphism class [X ] ∈ Mx,y .
This moduli space M̂G

x,y is empty if there is no surjection r : π1(X, y) → G,

otherwise we obtain that M̂G
x,y is a finite étale covering space of Mx,y with

fibre over X equal to the quotient set

Epi(π1(X, y),G)/ Inn(G).

By the theorem of Grauert and Remmert [15] M̂G
x,y is a quasi-projective

variety.

The following theorem concerning surfaces isogenous to a product is a
minor amendment to Theorem 3.3 of [8], and a rephrasing of Theorem 5.19
of [9]):

Theorem 5.3 Let S = (C1 × C2)/G be a surface isogenous to a product.
Then any surface X with the same topological Euler number and the same
fundamental group as S is diffeomorphic to S. The corresponding subset
M

top
S = M

di f f
S of the moduli space, corresponding to surfaces orientedly

homeomorphic, resp. orientedly diffeomorphic to S, is a union of connected
components of M. It is either irreducible or it consists of two irreducible con-
nected components which are exchanged by complex conjugation. The whole
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subset corresponding to surfaces X with the same topological Euler number
and the same fundamental group as S consists of at most four irreducible
connected components (corresponding to the choices of possibly replacing a
factor Ci by its complex conjugate).

Remark 5.4 The irreducible connected components corresponding to surfaces
X with the same topological Euler number and the same fundamental group as
S are precisely the irreducible connected components containing S = (C1 ×
C2)/G, respectively S̄, respectively (C̄1×C2)/G, respectively (C1×C̄2)/G =
(C̄1 × C2)/G, where X̄ denotes the complex conjugate of X .

These components can coincide (as it is the case when the group G is trivial).
The irreducible connected components containing S, respectively S̄, have

as union M
top
S = M

di f f
S .

If S is a Beauville surface (i.e., S is rigid) then we have at most four points
and it follows that S is defined over Q̄, whence the Galois group Gal(Q̄/Q)
acts on the discrete subset of the moduli space M of surfaces of general type
corresponding to Beauville surfaces.

The following conjecture, suggested by the argument used in order to prove
our main theorem, is quite tempting.

Conjecture 5.5 (Conjecture 2.11 in [10]) The absolute Galois group Gal
(Q̄/Q) acts faithfully on the discrete subset of the moduli space M of sur-
faces of general type corresponding to Beauville surfaces.

5.1 Construction of certain families of surfaces isogenous to a product

Fix now an integer g ≥ 3, and another integer g′ ≥ 2.
Consider now all the algebraic numbers a /∈ Q and all the possible smooth

complex curves C ′ of genus g′, observing that the fundamental group of C ′ is
isomorphic to the standard group

πg′ :=
〈
α1, β1, . . . , αg′, βg′ |�g′

i=1[αi , βi ] = 1
〉
.

Since g′ ≥ 2 and, as we saw in section three, Ga is 2−generated there
are plenty of epimorphisms (surjective homomorphisms) μ : πg′ → Ga . For
instance it suffices to consider the epimorphism θ : πg′ → Fg′ from πg′ to the
free group Fg′ := 〈λ1, . . . , λg′ 〉 in g′ letters given by θ(αi ) = θ(βi ) = λi , ∀
1 ≤ i ≤ g′, and to compose θ with the surjection φ : Fg′ → Ga , given by
φ(λ1) = τ0, φ(λ2) = τ1, and φ(λi ) = 1 for 3 ≤ i ≤ g′.
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Consider all the possible epimorphisms μ : πg′ → Ga . Each such μ gives
a normal unramified covering D′ → C ′ with monodromy group Ga .

Definition 5.6 Let Na be the subset of the moduli space of surfaces of general
type given by surfaces isogenous to a product of unmixed type S ∼= (Da ×
D′)/Ga , where Da, D′ are as above (and the group Ga acts by the diagonal
action).

From Theorem 5.3 follows:

Proposition 5.7 (i) For each a ∈ Q̄, Na is a union of connected components
of the moduli space of surfaces of general type.

(ii) The absolute Galois group Gal(Q̄/Q) acts on the set of connected com-
ponents of the moduli space M of surfaces of general type.

(iii) Moreover, for σ ∈ Gal(Q̄/Q), σ(Na) = Nσ(a).

Proof (i) Since Da is a triangle curve, the pair (Da,Ga) is rigid, whereas,
varying C ′ and μ, we obtain the full union of the moduli spaces for the
pairs (D′,Ga), corresponding to the possible free topological actions of
the group Ga on a curve D′ of genus |Ga|(g′ − 1)+ 1.

Thus, according to Theorem 3.3 of [8], the family of surfaces S ∼= (Da ×
D′)/Ga obtained varying C ′ andμ gives a union of connected components
of the moduli space M of surfaces of general type.

(ii) Choose now the canonical model X of a surface of general type S and
apply the field automorphismσ ∈ Aut(C) to a point of the Hilbert scheme
corresponding to the m-canonical image of S (if m ≥ 5 the corresponding
surface is isomorphic to X , cf. [6], later m shall be taken sufficiently large).
We obtain a surface which we denote by Xσ , and whose minimal model
is Sσ .

Since the subscheme of the Hilbert scheme corresponding to m-
pluricanonical embedded surfaces is defined over Q, it follows that the
action on the set of connected components of this subscheme, which is
in bijection with the set of connected components of the moduli space
(since for m >> 0 M is the GIT quotient of the above subscheme, see
[13]), depends only on the image σ ∈ Gal(Q̄/Q) (as observed in (i) of
4.5).

(iii) Choose now a surface S as above (thus, [S] ∈ Na) and apply the field
automorphism σ ∈ Aut(C) to S obtaining Sσ .

By taking the fibre product of σ with Da × D′ → S it follows that Sσ

has an étale covering with group Ga which is the product (Da)
σ × (D′)σ .

Recall that (Ca)
σ = Cσ(a) (since σ(a) corresponds to another embedding of

the field L into C), and recall the established equality for Belyi maps (Fa)
σ =

Fσ(a), which implies (Da)
σ = Dσ(a).
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On the other hand, the quotient of (D′)σ by the action of the group Ga has
genus equal to the dimension of the space of invariants dim(H0(�1

(D′)σ )
Ga ),

but this dimension is the same as g′ = dim(H0(�1
D′)Ga ). Hence the action of

Ga on (D′)σ is also free (by Hurwitz’ formula), and we have shown that Sσ

is a surface whose moduli point is in Nσ(a). �

We prove now an intermediate result.

Theorem 5.8 The absolute Galois group Gal(Q̄/Q) acts faithfully on the set
of connected components of the (coarse) moduli space of étale marked surfaces
isogenous to a higher product.

Proof Given a ∈ Q̄, consider a connected component N̂
ρ
a of the space of Ga-

étale-marked surfaces of general type MG
x,y corresponding to a fixed surjection

μ : πg′ → G := Ga.

To the monodromy μ and to an isomorphism π1(C ′, y) ∼= πg′ , where C ′ is
a curve of genus g′, y ∈ C ′, corresponds an unramified G-covering C2 → C ′,
and we denote by g2 the genus of C2, thus g2 − 1 = |G|(g′ − 1).

The homomorphismμ has then a kernel isomorphic to πg2 , and conjugation
by elements of πg′ determines a homomorphism

ρ : G → Out+(πg2) = Mapg2
,

where Out+(πg2) ⊂ Out(πg2) is the index two subgroup of automorphism
classes whose action on the abelianization Z2g2 of πg2 has determinant = 1.

The homomorphism ρ is called the topological type of the action of G, and
is well defined, up to conjugation in the mapping class group Mapg2

.
Our theorem follows now from the following

Main Claim: if N̂
ρ
a = σ(N̂

ρ
a ), then necessarily a = σ(a).

Proof of the main claim: our assumption says that there are two curves C,C ′
of genus g′, and two respective covering curves C2, C ′

2, with group Ga and
monodromy typeμ (equivalently, with topological type ρ of the action of Ga),
such that there exists an isomorphism

f : Dσ
a × Cσ

2 → Da × C ′
2

commuting with the action of Ga on both surfaces.
By the rigidity lemma 3.8 of [7], f is of product type, and since one action

is not free while the other is free, we obtain that f = f1 × f2, where f1 :
Dσ

a → Da commutes with the Ga action.
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Therefore the marked triangle curves (Da,Ga, ia) and (Dσ
a ,Ga,Ad(σ )ia)

are isomorphic and by Theorem 4.6 we get a = σ(a). �


6 What happens, if we forget the marking?

We shall assume throughout that we are given a nontrivial element σ ∈
Gal(Q̄/Q), and that a �= b are elements in Q̄ such that b = σ(a).

Observe the following: σ acts nontrivially on the set π0(M) of connected
components of M if we find a, b as above such that:

(**) Na and Nb do not intersect.
Else, (**) does not hold for each a, Na and Nb intersect and, by the structure

theorem for surfaces isogenous to a product, we obtain that for all a the two
triangle curves Da and Db are isomorphic.

Moreover, if σ acts as the identity on π0(M) it acts as the identity on the
subset π0(Na) of π0(M) (defined in 5.6) and whose points correspond to
the connected components N

ρ
a (set of isomorphism classes of surfaces S =

(Da × C2)/Ga , where the topological type of the action of Ga on C2 is ρ).

6.1 Twisting a surface isogenous to a product

We can produce more connected components of the moduli space of surfaces
isogenous to a product via the following construction.

Definition 6.1 Assume that (C1,G, η1), (C2,G, η2) are two marked curves,
and consider their product (C1 × C2,G × G, η1 × η2). For each λ ∈ Aut(G)
we consider the subgroup

G(λ) := {(g, λ(g)) ⊂ G × G}.

We denote by Sλ the quotient (C1 ×C2)/G(λ), reserving the notation S for
the case λ = I d. In the case where the action of G on C2 is free, then all the
surfaces Sλ are surfaces isogenous to a product.

In particular, if S is a point in the connected component Nρ
a , for each element

λ ∈ Aut(G), the twisted surface Sλ is an element in the connected component

N
ρλ−1

a of the moduli space, inπ0(Na), corresponding to the epimorphism λ◦μ
instead of μ.

The action of the absolute Galois group on Sλ is induced by the one on
C1 × C2, so that Sσλ = (Cσ

1 × Cσ
2 )/Ad(σ )(G(λ)).
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6.2 Automorphism of Ga associated to elements of the absolute Galois
group acting trivially on π0(M)

Proposition 6.2 Assume that σ acts as the identity on the subset π0(Na) of
π0(M), in particular that σ(Nρ

a ) = N
ρ
a for all topological types ρ of the

action of Ga on C2 (associated to a surjection μ : πg′ → Ga =: G).
Let S = (Da × C2)/Ga be a point in N

ρ
a . Then there is an isomorphism

f1 : Da → Dσ(a).
Define ψ1 := Ad( f −1

1 σ): then ψ1 lies in the centre Z(Aut(G)) of Aut(G),
in particular the class [ψ1] ∈ Out(G) lies in the centre Z(Out(G)).

Proof For each λ ∈ Aut(G), we have by our assumption an isomorphism of
fundamental groups of π1(Sλ)with π1(Sσλ ), induced by an isomorphism of Sλ
with the conjugate (S′′

λ)
σ of another surface S′′

λ in the connected component
of Sλ.

By the unicity of the minimal realisation of a surface isogenous to a product
(see [7], prop. 3.13) this isomorphism lifts to an isomorphism of product type

f1 × f2 : Da × C2 ∼= Dσ
a × (C ′′

2 )
σ = Dσ(a) × (C ′′

2 )
σ .

Notice that, for each λ, (S′′
λ)
σ is a quotient of Dσ(a) × (C ′′

2 )
σ .

Identifying (S′′
λ)
σ to Sλ = (C1 × C2)/G via the given isomorphism, we get

that the Galois automorphism σ acts on G × G by a product automorphism
ψ1 × ψ2, where ψ1 := Ad( f −1

1 σ) is uniquely defined, while ψ2 is only
defined up to an inner automorphism, corresponding to an automorphism of
C2 contained in G.

Since σ descends to the respective quotients, we must have:

(ψ1 × ψ2)(G(λ)) = G(λ) ⇔ (ψ1(g), ψ2(λ(g))) ∈ G(λ)

⇔ ψ2(λ(g))) = λ(ψ1(g)) ∀g ∈ G.

By setting λ = I d, we obtain ψ1 = ψ2, and using

ψ2 ◦ λ = λ ◦ ψ1, ∀λ,
we conclude that ψ1 lies in the centre Z(Aut(G)). �

Remark 6.3 Clearly, if the class [ψ1] ∈ Out(G) is trivial, then the triangle
curves (Da,G) and (Db,G) differ by an inner automorphism of G and we
conclude by proposition 4.9 that Ca

∼= Cb, hence a = b, a contradiction.
Therefore we may assume that the class [ψ1] ∈ Z(Out(G)) is nontrivial for

each σ acting as the identity on π0(Na).
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We are now ready for the proof of

Theorem 6.4 The absolute Galois group Gal(Q̄/Q) acts faithfully on the set
of connected components of the (coarse) moduli space M of surfaces of general
type.

There are two main intermediate results, which obviously together imply
Theorem 6.4.

For the first we need a new definition.

Definition 6.5 Let a ∈ Q̄ \ Q and define G̃a := Aut(Da).
Given a surjective homomorphism

μ̃ : πg′ → G̃a,

with topological type ρ̃, consider all the étale covering spaces C2 → C2/G̃a =
C ′ of curves C ′ of genus g′ with the corresponding topological type ρ̃.

Consider then the connected component Ñρ̃
a of the moduli space of surfaces

of general type M corresponding to surfaces isogenous to a product of the type

S = (Da × C2)/G̃a .

Proposition 6.6 Let K be the kernel of the action of Gal(Q̄/Q) on π0(M).
Then K is an abelian subgroup.

Proof We want to embed the kernel K in an abelian group, e.g. in the direct
product of groups of the form Z(Out(G)), using Proposition 6.2.

Assume that σ lies in the kernel K. Then, for each algebraic number a, and
every ρ̃ as above, σ stabilizes the connected component Ñ

ρ̃
a .

Let us denote here for simplicity G := G̃a.

Hence to σ we associate an element [ψ1] ∈ Z(Out(G)), which is nontrivial
if and only if σ(a) �= a.

Therefore it suffices to show that, for a fixed a ∈ Q̄, and ρ̃ : G → Mapg2
=

Out(πg2), the map described in Proposition 6.2

σ 
→ [ψ1] ∈ Z(Out(G))

is a homomorphism.
Observe that, in fact, there is a dependence of ψ1 on σ and on the algebraic

number a. To stress these dependences, we change the notation and denote the
isomorphism ψ1 corresponding to σ and a by ψσ,a , i.e.,

ψσ,a(g) = �−1
1 ◦ gσ ◦�1 = �−1

1 ◦ σgσ−1 ◦�1,
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where �1 : Da → Dσ(a) is the isomorphism (analogous to the previously

considered f1) induced by the fact that σ stabilizes the component Ñ
ρ̃
a .

Since Da is fully marked, whenever we take another isomorphism� : Da →
Dσ(a) we have that (�)−1 ◦ �1 ∈ Aut(Da) = G. Therefore, since we work
in Out(Ga), the class of ψσ,a does not depend on the chosen isomorphism
� : Da → Dσ(a).

Let now σ, τ be elements of K. We have then (working always up to inner
automorphisms of G):

• ψσ,a = Ad(ϕ−1σ), for any isomorphism ϕ : Da → Dσ(a), and any alge-
braic number a;

• ψτ,a = Ad(�−1τ), for any isomorphism � : Da → Dτ(a), and any alge-
braic number a;

• ψτσ,a = Ad(�−1τσ ), for any isomorphism � : Da → Dτσ (a).

We can choose � := ϕτ ◦�, and then we see immediately that

ψτσ,a = Ad((ϕτ ◦�)−1τσ ) = Ad(�−1(ϕτ )−1τσ )

= Ad(�−1τϕ−1τ−1τσ ) = Ad(�−1τ)Ad(ϕ−1σ) = ψσ,a ◦ ψτ,a. (1)

This shows that the map

K →
∏

a∈Q̄

∏

ρ̃

Z(Out(G̃a)),

which is injective by Remark 6.3, is in fact a group homomorphism. Therefore
K is abelian (as a subgroup of an abelian group). �

Proposition 6.7 Any abelian normal subgroup K of Gal(Q̄/Q) is trivial.

Proof Let N ⊂ Q̄ be the fixed subfield for the subgroup K of Gal(Q̄/Q).
N is a Galois extension of the Hilbertian field Q and N , if K is not trivial, is

not separably closed. Hence, by proposition 16.11.6 of [12] then Gal(N ) :=
Gal(Q̄/N ) is not prosolvable, in particular, it is not abelian. However, not
only is in general the closure of a normal abelian subgroup in a topological
group also normal and abelian, but also one sees right away that K = Gal(N )
since K is closed (as intersection of closed subgroups). Hence we derive a
contradiction. �


Theorem 6.4 has the following consequence:

Theorem 6.8 If σ ∈ Gal(Q̄/Q) is not in the conjugacy class of complex
conjugation c, then there exists a surface isogenous to a product X such that
X and the Galois conjugate surface Xσ have non isomorphic fundamental
groups.
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Proof By a Theorem of Artin (see cor. 9.3 in [18]) we know that any σ which
is not in the conjugacy class of c has infinite order.

By Theorem 6.4 the orbits of σ on the subset of π0(M) corresponding to
the union of the Na’s have unbounded cardinality, otherwise there is a power
of σ acting trivially, contradicting the statement of 6.4.

Take now an orbit with five elements at least: then we get surfaces S0, S1 :=
Sσ0 , . . . , S4 := Sσ3 , which belong to five different components. Since we have
at most four different connected components where the fundamental group is
the same, we conclude that there is an i ≤ 3 such that π1(Si ) �= π1(Si+1). �


In a previous version of the paper we assumed that the following question
has a positive answer.

Question 6.9 Let S be a surface isogenous to a product and assume that Sσ

has the same fundamental group, hence it is diffeomorphic to S. Is it true that
Sσ is orientedly diffeomorphic to S? The reason to ask this question, also in
greater generality under the assumption that X is diffeomorphic to Xσ , is that
σ sends a cohomology group Hi (X, � j

X ) to the corresponding one for Xσ ,
thus preserving the Hodge summands of the cohomology.

Observe now that Xa and (Xa)
σ have isomorphic Grothendieck étale

fundamental groups. In particular, the profinite completions of π1(Xa) and
π1((Xa)

σ ) are isomorphic. In the last section we shall give explicit examples
where the actual fundamental groups are not isomorphic.

Another interesting consequence is the following. Observe that the absolute
Galois group Gal(Q̄/Q) acts on the set of connected components of the (coarse)
moduli space of minimal surfaces of general type. Theorem 6.8 has as a con-
sequence that this action of Gal(Q̄/Q) does not induce an action on the set of
isomorphism classes of fundamental groups of surfaces of general type.

Corollary 6.10 Gal(Q̄/Q) does not admit an action on the set G of isomor-
phism classes of groups which is compatible with the map π1 associating to an
element N ∈ π0(M) the isomorphism class of the fundamental group π1(S)
of the minimal model of a(ny) surface S of general type such that [S] ∈ N
(i.e., an action such that σ(π1(S)) = π1(Sσ ).

Proof In fact, complex conjugation does not change the isomorphism class
of the fundamental group (X and X̄ are diffeomorphic). Now, if we had such
an action on the set of isomorphism classes of fundamental groups, then the
whole normal closure H of the Z/2 generated by complex conjugation (the
set of automorphisms of finite order, by the cited theorem of E. Artin, see
corollary 9.3 in [18]) would act trivially.

By Theorem 6.8 the subgroup H would then be equal to the union of these
elements of order 2 in Gal(Q̄/Q). But a group where each element has order
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≤ 2 is abelian, and again we would have a normal abelian subgroup, H, of
Gal(Q̄/Q), contradicting 6.7. �


The above arguments show that the set of elements σ ∈ Gal(Q̄/Q) such
that for each surface of general type S and Sσ have isomorphic fundamental
groups is indeed a subgroup where all elements of order two, in particular it
is an abelian group of exponent 2.

Question 6.11 (Conjecture 2.5 in [10]) Is it true that for each σ ∈ Gal(Q̄/Q),
different from the identity and from complex conjugation, there exists a surface
of general type S such that S and Sσ have non isomorphic fundamental groups?

It is almost impossible to calculate explicitly the fundamental groups of
the surfaces constructed above, since one has to explicitly calculate the mon-
odromy of the Belyi function of the very special hyperelliptic curves Ca .

Therefore we give in the next section explicit examples of pairs of rigid
surfaces with non isomorphic fundamental groups which are Galois conjugate.

7 Explicit examples

In this section we provide, as we already mentioned, explicit examples of
pairs of surfaces with non isomorphic fundamental groups which are conjugate
under the absolute Galois group. Hence they have non isomorphic fundamental
groups with isomorphic profinite completions (recall that the completion of a
group G is the inverse limit

Ĝ = limK� f G(G/K ),

of the factors G/K , K being a normal subgroup of finite index in G).
The surfaces in our examples are rigid. In fact, we can prove the following

Theorem 7.1 There exist Beauville surfaces which yield explicit examples of
Galois conjugate surfaces with non-isomorphic fundamental groups (whose
profinite completions are isomorphic).

Before proving the above result by constructing explicitly two conjugate
Beauville surfaces with non-isomorphic topological fundamental groups, we
review briefly some facts concerning complex polynomials with two critical
values {0, 1} (see [3] for an elementary treatment of what follows).

Let P ∈ C[z] be a polynomial with critical values {0, 1}.
In order not to have infinitely many polynomials with the same branching

behaviour, one considers only normalized polynomials

P(z) := zn + an−2zn−2 + . . . a0.
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The condition that P has only {0, 1} as critical values, implies, as we shall
briefly recall, that P has coefficients in Q̄. Fix the types (m1, . . . ,mr ) and
(n1, . . . , ns) of the cycle decompositions of the respective local monodromies
around 0 and 1: we can then write our polynomial P in two ways, namely as:

P(z) =
r∏

i=1

(z − βi )
mi ,

and

P(z) = 1 +
s∏

k=1

(z − γk)
nk .

We have the equations F1 = ∑
miβi = 0 and F2 = ∑

nkγk = 0 (since P
is normalized). Moreover, m1 + . . .+ mr = n1 + . . .+ ns = n = deg P and
therefore, since

∑
j (m j − 1)+ ∑

i (ni − 1) = n − 1, we get r + s = n + 1.
Since we have

∏r
i=1(z − βi )

mi = 1 + ∏s
k=1(z − γk)

nk , comparing coeffi-
cients we obtain further n − 1 polynomial equations with integer coefficients
in the variables βi , γk , which we denote by F3 = 0, . . . , Fn+1 = 0. Let
V(n; (m1, . . . ,mn), (n1, . . . , ns)) be the algebraic set in affine (n + 1)-space
defined by the equations F1 = 0, . . . , Fn+1 = 0. Mapping a point of this
algebraic set to the vector (a0, . . . , an−2) of coefficients of the corresponding
polynomial P we obtain a set

W(n; (m1, . . . ,mn), (n1, . . . , ns))

(by elimination of variables) in affine (n − 1) space. Both these are finite
algebraic sets defined over Q since by Riemann’s existence theorem they are
either empty or have dimension 0.

Observe also that the equivalence classes of monodromies μ : π1(P
1 \

{0.1.∞}) → Sn correspond to the orbits of the group of n-th roots of 1
(we refer to [3] for more details).

Lemma 7.2

W := W(7; (2, 2, 1, 1, 1); (3, 2, 2))

is irreducible over Q and splits into two components over C.

Proof This can easily be calculated by a MAGMA routine. �

The above lemma implies that Gal(Q̄/Q) acts transitively on W. Looking

at the possible monodromies, one sees that there are exactly two real non
equivalent polynomials.
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In both cases, which will be explicitly described later on, the two permuta-
tions, of types (2, 2) and (3, 2, 2), are seen to generate A7 and the respective
normal closures of the two polynomial maps are easily seen to give (we use
here the fact that the automorphism group of A7 is S7) nonequivalent triangle
curves D1, D2.

By Hurwitz’s formula, we see that g(Di ) = |A7|
2 (1− 1

2 − 1
6 − 1

7)+1 = 241.

Definition 7.3 Recall first that an (ordered) system of generators (a1, . . . , am)

of a group G is said to be spherical iff the product a1 ·· · ··am equals the identity
element of G.

Let now (a1, a2, a3) and (b1, b2, b3) be two spherical systems of generators
of a finite group G of the same signature, i.e., {ord(a1), ord(a2), ord(a3)} =
{ord(b1), ord(b2), ord(b3)}. Then (a1, a2, a3) and (b1, b2, b3) are called Hur-
witz equivalent iff they are equivalent under the equivalence relation generated
by

(a1, a2, a3) ≡
(

a2, a−1
2 a1a2, a3

)
,

(a1, a2, a3) ≡
(

a1, a3, a−1
3 a2a3

)
.

It is well known that two such triangle curves are isomorphic, compatibly
with the action of the group G, if and only if the two spherical systems of
generators are Hurwitz equivalent.

Lemma 7.4 There is exactly one Hurwitz equivalence class of triangle curves
given by a spherical system of generators of signature (5, 5, 5) of A7.

Proof This is shown by an easy MAGMA routine. �

Remark 7.5 In other words, if D1 and D2 are two triangle curves given by
spherical systems of generators of signature (5, 5, 5) of A7, then D1 and D2
are not only isomorphic as algebraic curves, but they have the same action of
G.

Let D be the triangle curve given by a(ny) spherical system of generators
of signature (5, 5, 5) of A7. Then by Hurwitz’ formula D has genus 505.

Consider the two triangle curves D1 and D2 as in Lemma 7.2 and ensueing
discussion. Clearly A7 acts freely on D1 × D as well as on D2 × D and we
obtain two non isomorphic Beauville surfaces S1 := (D1 × D)/G, S2 :=
(D2 × D)/G.

Remark 7.6 The following proposition yields the proof of Theorem 7.1.
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Proposition 7.7 (1) S1 and S2 have non-isomorphic fundamental groups.

(2) There is a field automorphism σ ∈ Gal(Q̄/Q) such that S2 = (S1)
σ . In

particular, the profinite completions of π1(S1) and π1(S2) are isomorphic.

Proof (1) Obviously, the two surfaces S1 and S2 have the same topological
Euler characteristic. If they had isomorphic fundamental groups, by The-
orem 3.3 of [8], S2 would be the complex conjugate surface of S1. In
particular, D1 would be the complex conjugate triangle curve of D2: but
this is absurd since we shall show, in the discussion following Remark 7.8,
that both D1 and D2 are real triangle curves.

(2) We know that (S1)
σ = ((D1)

σ × (D)σ )/G. Since there is only one Hur-
witz class of triangle curves given by a spherical system of generators of
signature (5, 5, 5) of A7, we have (D)σ ∼= D (with the same action of G).

�

We determine now explicitly the respective fundamental groups of S1 and

S2.
In general, let (a1, . . . , an) and (b1, . . . , bm) be two sets of spherical gen-

erators of a finite group G of respective order signatures r := (r1, . . . , rn),
s := (s1, . . . , sm). We denote the corresponding ‘polygonal’ curves by D1,
resp. D2.

Assume now that the diagonal action of G on D1 × D2 is free. We get then
the smooth surface S := (D1 × D2)/G, isogenous to a product.

Denote by Tr := T (r1, . . . , rn) the polygonal group

〈
x1, . . . , xn−1|xr1

1 = · · · = xrn−1
n−1 = (x1x2 . . . xn−1)

rn = 1
〉
.

We have the exact sequence (cf. [7] cor. 4.7)

1 → πg1 × πg2 → Tr × Ts → G × G → 1,

where gi is the genus of Di .
Let 
G be the diagonal in G × G and let H be the inverse image of 
G

under � : Tr × Ts → G × G. We get the exact sequence

1 → πg1 × πg2 → H → G ∼= 
G → 1.

Remark 7.8 π1(S) ∼= H (cf. [7] cor. 4.7).

We choose now an arbitrary spherical system of generators of signature
(5, 5, 5) of A7, for instance ((1, 7, 6, 5, 4), (1, 3, 2, 6, 7), (2, 3, 4, 5, 6)). Note
that we use here MAGMA’s notation, where permutations act on the right (i.e.,
ab sends x to (xa)b).
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Fig. 1 Monodromy
correspondig to (2)

1 2 3

4

5

67

Fig. 2 Monodromy
correspondig to (3)

1 2

34

5

6

7

A MAGMA routine shows that

((1, 2)(3, 4), (1, 5, 7)(2, 3)(4, 6), (1, 7, 5, 2, 4, 6, 3)) (2)

and
((1, 2)(3, 4), (1, 7, 4)(2, 5)(3, 6), (1, 3, 6, 4, 7, 2, 5)) (3)

are two representatives of spherical generators of signature (2, 6, 7) yielding
two non isomorphic triangle curves C1 and C2, each of which is isomorphic
to its complex conjugate. In fact, an alternative direct argument is as follows.
First of all, Ci is isomorphic to its complex conjugate triangle curve since,
for an appropriate choice of the real base point, complex conjugation sends
a 
→ a−1, b 
→ b−1 and one sees that the two corresponding monodromies
are permutation equivalent (see Figs. 1, 2).

Moreover, since Aut(A7) = S7, if the two triangle curves were isomorphic,
then the two monodromies would be conjugate in S7. That this is not the case
is seen again by Figs. 1 and 2.

The two corresponding homomorphisms�1 : T(2,6,7)×T(5,5,5) → A7 ×A7
and �2 : T(2,6,7) × T(5,5,5) → A7 × A7 give two exact sequences

1 → π1(C1)× π1(C) → T(2,6,7) × T(5,5,5) → A7 × A7 → 1,
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and

1 → π1(C2)× π1(C) → T(2,6,7) × T(5,5,5) → A7 × A7 → 1,

yielding two non isomorphic fundamental groups π1(S1) = �−1
1 (
A7) and

π1(S2) = �−1
2 (
A7) fitting both in an exact sequence of type

1 → π241 × π505 → π1(S j ) → 
A7
∼= A7 → 1,

where π241 ∼= π1(C1) ∼= π1(C2), π505 = π1(C).
Using the same method that we used for our main theorems, namely, using

a surjection of a group πg′ → A7, g′ ≥ 2, we get infinitely many examples
of pairs of fundamental groups which are nonisomorphic, but which have
isomorphic profinite completions.

We obtain the following theorem, whose proof we omit (being based on
arguments already given).

Theorem 7.9 There is an infinite sequence of integers g1 < g2 < . . . < gi <

. . ., where each gi is of the form gi = 1 + 1
2 7!(g′

i − 1), and for each gi there
is a pair of surfaces S1(gi ) and S2(gi ) isogenous to a product, such that

• the corresponding connected components N(S1(gi )) and N(S2(gi )) are
different,

• there is a σ ∈ Gal(Q̄/Q) such that σ(N(S1(gi ))) = N(S2(gi )),
• π1(S1(gi )) is non isomorphic toπ1(S2(gi )), but they have isomorphic profi-

nite completions,
• the fundamental groups fit into an exact sequence

1 → π241 × πgi → π1(S j (gi )) → A7 → 1, j = 1, 2.

Remark 7.10 (1) Many more explicit examples as the one above (but with
cokernel group different from A7) can be obtained using polynomials with
two critical values.

(2) A construction of polynomials with two critical values having a very large
Galois orbit was proposed to us by Duco van Straten.
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