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Introduction

The interaction of algebraic geometry and topology has been such, in the
last three centuries, that it is often difficult to say when does a result be-
long to one discipline or to the other, the archetypical example being the
Bézout theorem, first conceived through a process of geometrical degener-
ation (algebraic hypersurfaces degenerating to union of hyperplanes), and
later clarified through topology and through algebra.

This ‘caveat’ is meant to warn the reader that a more appropriate title for
the present survey article could be: ‘Some topological methods in moduli
theory, and from the personal viewpoint, taste and understanding of the
author’. In fact many topics are treated, some classical and some very
recent, but with a choice converging towards some well defined research
interests.

I considered for some time the tempting and appealing title ‘How can the
angel of topology live happily with the devil of abstract algebra’, paraphras-
ing the motto by Hermann Weyl1.

The latter title would have matched with my personal philosophical point
of view: while it is reasonable that researchers in mathematics develop with
enthusiasm and dedication new promising mathematical tools and theories,
it is important then that the accumulated knowledge and cultural wealth
(the instance of topology in the twentieth century being a major one) be
not lost afterwards. This wealth must indeed not only be invested and
exploited, but also further developed by addressing problems in other fields,
problems which often raise new and fascinating questions. In more down
to earth words, the main body of the article is meant to be an invitation
for algebraic geometers to use more classical topology. The structure of the
article is, in a sense, that of a protracted colloquium talk, and where we
hope that also topologists, for which many of these notions are well known,
will get new kicks coming from algebraic geometry, and esepcially moduli
theory.

In this article we mostly consider moduli theory as the fine part of classifi-
cation theory of complex varieties: and we want to show how in some lucky
cases topology helps also for the fine classification, allowing the study of
the structure of moduli spaces: as we have done quite concretely in several
papers (

burniat1
[BC09b],

keumnaie
[BC09a],

burniat2
[BC10],

burniat3
[BC10-b],

bc-inoue
[B-C12],

bc-CMP
[B-C13]) .

We have already warned the reader about the inhomogeneity of the level
assumed in the text: usually many sections start with very elementary ar-
guments but, at a certain point, when we deal with current problems, the
required knowledge may raise considerably.

Let us try to summarize the logical thread of the article.
Algebraic topology flourished from some of its applications (such as Brouwer’s

fixed point theorem, or the theorem of Borsuk-Ulam) inferring the non ex-
istence of certain continuous maps from the observation that their existence

1In these days the angel of topology and the devil of abstract algebra fight for the soul
of each individual mathematical domain,

Weyl
[Weyl39], p.500.

My motto is instead: ‘Any good mathematical theory requires several good theorems.
Conversely, a really good theorem requires several good theories. ’



4 F. CATANESE

would imply the existence of homomorphisms satisfying algebraic properties
which are manifestly impossible to be verified.

Conversely, the theory of fibre bundles and homotopy theory give a topo-
logical incarnation of a group G through its classifying space BG. The
theory of classifying spaces translates then group homomorphisms into con-
tinuous maps to classifying spaces. For instance, in algebraic geometry, the
theory of Albanese varieties can be understood as dealing with the case
where G is free abelian.

For more general G, an important question is the one of the regular-
ity of these classifying maps, such as harmonicity, addressed by Eells and
Sampson, and their complex analyticity addressed by Siu and others. These
questions, which were at the forefront of mathematical research in the last
40 years, have powerful applications to moduli theory.

After a general introduction directed towards a broader public, starting
with classical theorems by Zeuthen-Segre and Lefschetz, proceeding to clas-
sifying spaces and their properties, I shall concentrate on some classes of
projective varieties which are classifying spaces for some group, providing
several explicit examples. I discuss then locally symmetric varieties, and at
a certain length the quotients of Abelian varieties by a cyclic group acting
freely, which are here called Bagnera-De Franchis varieties.

At this point the article becomes instructional, and oriented towards
graduate students, and several important topics, like orbifold fundamen-
tal groups, Teichmüller spaces, moduli spaces of curves, group cohomology
and homology are treated in detail (and a new proof of a classical theorem
of Hopf is sketched).

Then some applications are given to concrete problems in moduli theory,
in particular a new construction of surfaces with pg = q = 1 is given.

The next section is devoted to a preparation for the rigidity and quasi-
rigidity properties of projective varieties which are classifying spaces (mean-
ing that their moduli spaces are completely determined by their topology);
in the section are recalled the by now classical results of Eells and Samp-
son, and Siu’s results about complex analyticity of harmonic maps, with
particular emphasis on bounded domains and locally symmetric varieties.

Other more elementary results, based on Hodge theory, the theorem of
Castelnuovo-De Franchis, and on the explicit constructions of classifying
spaces are explained in detail because of their importance for Kähler mani-
folds. We then briefly discuss Kodaira’s problem and Voisin’s counterexam-
ples, then we dwell on fundamental groups of projective varieties, and on
the so called Shafarevich conjecture.

Afterwards we deal with several concrete investigations of moduli spaces,
which in fact lead to some group theoretical questions, and to the investi-
gation of moduli spaces of varieties with symmetries.

Some key examples are: varieties isogenous to a product, and the Inoue-
type varieties introduced in recent work with Ingrid Bauer: for these the
moduli space is determined by the topological type. I shall present new
results and open questions concerning this class of varieties.

In the final part, after recalling basic results on complex moduli theory,
we shall also illustrate the concept of symmetry marked varieties and their
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moduli, discussing the several reasons why it is interesting to consider moduli
spaces of triples (X,G,α) where X is a projective variety, G is a finite group,
and α is an effective action of G on X. If X is the canonical model of a
variety of general type, then G is acting linearly on some pluricanonical
model, and we have a moduli space which is a finite covering of a closed
subspace MG of the moduli space.

In the case of curves we show how this investigation is related to the
description of the singular locus of the moduli space Mg (for instance of its
irreducible components, see

cornalba
[Cor87]), and of its compactification Mg, (see

singMg
[Cat12]).

In the case of surfaces there is another occurrence of Murphy’s law, as
shown in my joint work with Ingrid Bauer (

burniat3
[BC10-b]): the deformation

equivalence for minimal models S and for canonical models differs drasti-
cally (nodal Burniat surfaces being the easiest example). This shows how
appropriate it is to work with Gieseker’s moduli space of canonical models
of surfaces.

In the case of curves, there are interesting relations with topology. Moduli
spaces Mg(G) of curves with a group G of automorphisms of a fixed topolog-
ical type have a description by Teichmüller theory, which naturally leads to
conjecture genus stabilization for rational homology groups. I will then de-
scribe two equivalent descriptions of the irreducible components of Mg(G),
surveying known irreducibility results for some special groups. A new fine
homological invariant was introduced in our joint work with Lönne and
Perroni: it allows to prove genus stabilization in the ramified case, extend-
ing a beautiful theorem due to Livingston (

Liv
[Liv85]) and Dunfield-Thurston

(
DT
[Du-Th06]), who dealt with the easier unramified case.

Another important application is the following one, in the direction of
arithmetic: in the 60’s J. P. Serre (

serre
[Ser64]) showed that there exists a field

automorphism σ in the absolute Galois group Gal(Q̄/Q), and a variety X
defined over a number field, such that X and the Galois conjugate variety
Xσ have non isomorphic fundamental groups, in particular they are not
homeomorphic.

In a joint paper with I. Bauer and F. Grunewald we proved a strong
sharpening of this phenomenon discovered by Serre, namely, that if σ is not
in the conjugacy class of the complex conjugation then there exists a surface
(isogenous to a product) X such that X and the Galois conjugate variety
Xσ have non isomorphic fundamental groups.

In the end we finish with an extremely quick mention of several interesting
topics which we do not have the time to describe properly, among these, the
stabilization results for the cohomology of moduli spaces and of arithmetic
varieties.
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1. Prehistory and beyond

The following discovery belongs to the 19-th century: consider the com-
plex projective plane P2 and two general homogeneous polynomials F,G ∈
C[x0, x1, x2] of the same degree d. Then F,G determine a linear pencil of
curves Cλ, ∀λ = (λ0, λ1) ∈ P1,

Cλ := {x = (x0, x1, x2) ∈ P2|λ0F (x) + λ1G(x) = 0}.

One sees that the curve Cλ is singular for exactly µ = 3(d− 1)2 values of λ,
as can be verified by an elementary argument which we now sketch.

In fact, x is a singular point of some Cλ iff the following system of three
homogeneous linear equations in λ = (λ0, λ1) has a nontrivial solution:

λ0
∂F

∂xi
(x) + λ1

∂G

∂xi
(x) = 0, ∀i = 0, 1, 2.

By generality of F,G we may assume that the curves C0 := {x|F (x) = 0}
and C1 := {x|G(x) = 0} are smooth and intersect transversally (i.e., with
distinct tangents) in d2 distinct points; hence if a curve of the pencil Cλ
has a singular point x, then we may assume that for this point we have
F (x) 6= 0 6= G(x), and then λ is uniquely determined.

If now ∂F
∂x0

and ∂G
∂x0

do not vanish simultaneously in x, then the above
system has a nontrivial solution if and only if

[
∂G

∂x0
· ∂F
∂xi
− ∂F

∂x0
· ∂G
∂xi

](x) = 0, i = 1, 2.

By the theorem of Bézout (see
walker
[Wal50]) the above two equations have

(2(d−1))2 = 4(d−1)2 solutions, including among these the (d−1)2 solutions
of the system of two equations ∂F

∂x0
(x) = ∂G

∂x0
(x) = 0.

One sees that, for F,G general, there are no common solutions of the
system

∂F

∂x0
(x) =

∂G

∂x0
(x) = [

∂G

∂x1
· ∂F
∂x2
− ∂F

∂x1
· ∂G
∂x2

](x) = 0,

hence the solutions of the above system are indeed

3(d− 1)2 = 4(d− 1)2 − (d− 1)2.

It was found indeed that, rewriting µ = 3(d−1)2 = d2 +2d(d−3)+3, the
above formula generalizes to a beautiful formula valid any smooth algebraic
surface S, the content of the so-called theorem of Zeuthen-Segre as follows:
observe in fact that d2 is the number of points where the curves of the pencil
meet, while the genus g of a plane curve of degree d equals (d−1)(d−2)

2 .

Theorem 1. (Zeuthen-Segre, classical) Let S be a smooth projective
surface, and let Cλ, λ ∈ P1 be a linear pencil of curves of genus g which
meet transversally in a distinct points. If µ is the number of singular curves
in the pencil (counted with multiplicity), then

µ− a− 2(2g − 2) = I + 4,

where the integer I is an invariant of the algebraic surface, called Zeuthen-
Segre invariant.
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Here, the integer a equals the self-intersection number C2 of the curve
C, while in modern terms the number 2g − 2 = C2 +KS · C, KS being the
divisor (zeros minus poles) of a rational differential 2-form.

In particular, our previous calculation shows that for P2 the invariant
I = −1.

The interesting part of the discovery is that the integer I + 4 is not only
an algebraic invariant, but is indeed a topological invariant.

Indeed, for a compact topological space X which can be written as the
disjoint union of locally closed sets Xi, i = 1, . . . r, homeomorphic to an
Euclidean space Rni , one can define

e(X) :=
r∑
i

(−1)ni ,

and indeed this definition is compatible with the more abstract definition

e(X) =
dim(X)∑
j=0

(−1)j rankHj(X,Z).

For example, the plane P2 = P2
C is obtained from a point attaching C = R2

and then C2 = R4, hence e(P2) = 3 and we verify that e(P2) = I + 4.
While for an algebraic curve C of genus g its topological Euler-Poincaré

characteristic, for short Euler number, equals e(C) = 2 − 2g, since C is
obtained as the disjoint union of one point, 2g arcs, and a 2-disk (think of
the topological realization as the quotient of a polygon with 4g sides.

The Euler Poincaré characteristic is multiplicative for products:

e(X × Y ) = e(X) · e(Y ),

and more generally for fibre bundles (a concept we shall introduce in the
next section), and accordingly there is a generalization of the theorem of
Zeuthen-Segre:

Theorem 2. (Zeuthen-Segre, modern) Let S be a smooth compact com-ZS
plex surface, and let S → B be a fibration onto a projective curve B of genus
b, and such that the the smooth fibres of f have genus g. Then

e(S) = (2b− 2)(2g − 2) + µ,

where µ ≥ 0, and µ = 0 if and only if all the fibres of f are smooth or, in
the case where g = 1, a multiple of a smooth curve of genus 1.

The technique of studying linear pencils turned out to be an invaluable
tool for the study of the topology of projective varieties, in fact Solomon
Lefschetz in the beginning of the 20-th century was able to describe the
relation holding between a smooth projective variety X ⊂ PN of dimension
n and its hyperplane section W = X ∩ H, where H is a general linear
subspace of codimension 1, a hyperplane.

The work of Lefschetz deeply impressed the Italian algebraic geometer
Guido Castelnuovo, who came to the conclusion that algebraic geometry
could no longer be carried over without the new emerging techniques, and
convinced Oscar Zariski to go on setting the building of algebraic geometry
on a more solid basis. The report of Zariski (

Zar
[Zar35]) had a big influence
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and the results of Lefschetz were reproven and vastly extended by several
authors: they say essentially that homology and homotopy groups of real
dimension smaller than the complex dimension n of X are the same for X
ands its hyperplane section W .

In my opinion the nicest proofs of the theorems of Lefschetz are those
given much later by Andreotti and Frankel (

AF1
[A-F59] ,

AF2
[A-F69]).

hyperplanesection Theorem 3. Let X be a smooth projective variety of complex dimension
n, let W = X ∩ H be a smooth hyperplane section of X, and let further
Y = W ∩H ′ be a smooth hyperplane section of W .

First Lefschetz’ theorem: the natural homomorphism Hi(W,Z) →
Hi(X,Z) is bijective for i < n − 1, and surjective for i = n − 1; similarly
for the natural homomorphisms of homotopy groups πi(W ) → πi(X) (the
results hold more generally, see

milnorMT
[Mil63],page 41, even if X is singular and

W contains the singular locus of X).
Second Lefschetz’ theorem: The kernel of Hn−1(W,Z)→ Hn−1(X,Z)

is the subgroup VanHn−1(W,Z) generated by the vanishing cycles, i.e., those
cycles which are mapped to 0 when W tends to a singular hyperplane section
Wλ in a pencil of hyperplane sections of X.

Generalized Zeuthen-Segre theorem: if µ is the number of singular
hyperplane sections in a general linear pencil of hyperplane sections of X,
then

e(X) = 2e(W )− e(Y ) + (−1)nµ.

Third Lefschetz’ theorem or Hard Lefschetz’ theorem:
The first theorem and the universal coefficients theorem imply for the

cohomology groups that H i(X,Z) → H i(W,Z) is bijective for i < n − 1,
while Hn−1(X,Z) → Hn−1(W,Z) is injective. Defining InvHn−1(W,Z) as
the Poincaré dual of the image of Hn−1(X,Z), then we have a direct sum
decomposition (orthogonal for the cup product) after tensoring with Q:

Hn−1(W,Q) = InvHn−1(W,Q)⊕VanHn−1(W,Q).

Equivalently, the operator L given by cup product with the cohomology class
h ∈ H2(X,Z) of a hyperplane, L : H i(X,Z) → H i+2(X,Z), induces an
isomorphism

Lj : Hn−j(X,Q)→ Hn+j(X,Q), ∀j ≤ n.

Not only the theorems of Lefschetz play an important role for our partic-
ular purposes, but we feel that we should also spend a few words sketching
how they lead to some very interesting and still widely open conjectures,
the Hartshorne conjectures (see

hartshorne
[Harts74]).

Assume now that the smooth projective variety X ⊂ PN is the complete
intersection of N − n hypersurfaces (this means the the sheaf IX of ideals
of functions vanishing on X is generated by polynomials F1, . . . , Fc, c :=
N − n being the codimension of X). Then the theorems of Lefschetz imply
that the homology groups of X equal those of PN for i ≤ n − 1 (recall
that Hi(PN ,Z) = 0 for i odd, while Hi(PN ,Z) = Z for i ≤ 2N , i even).
Similarly holds true for the homotopy groups, and we recall that, since
PN = S2N+1/S1, then πi(PN ) = 0 for i ≤ 2N, i 6= 0, 2.



TOPOLOGICAL METHODS FOR MODULI 9

It was an interesting discovery by Barth that a similar (but weaker) result
holds true for each smooth subvariety of PN , provided the codimension c =
N − n of X is smaller than the dimension.

Theorem 4. (Barth-Larsen) Let X be a smooth subvariety of dimensionBL
n in PN : then the homomorphisms

Hi(X,Z)→ Hi(PN ,Z), πi(X)→ πi(PN )

are bijective for i ≤ n−c⇔ i < 2n−N+1, and surjective for i = n−c+1 =
2n−N + 1.

Observe that, if N = n+1, then the above result yields exactly the one of
Lefschetz, hence the theorem is sharp in this trivial case (but much weaker
for complete intersections of higher codimension). The case of the Segre
embedding X := P2 × P2 → P8 is a case which shows how the theorem is
sharp since Z ∼= H2(P8,Z)→ H2(X,Z) ∼= (Z)2 is not surjective.

The reader might wonder why the theorem of Barth and Larsen is a
generalization of the theorem of Lefschetz. First of all, while Barth used
originally methods of holomorphic convexity in complex analysis (somehow
reminiscent of Morse theory in the real case) Hartshorne showed (

hartshorne
[Harts74])

how the third Lefschetz Theorem implies the result of Barth for cohomol-
ogy with coefficients in Q. Moreover a strong similarity with the Lefschetz
situation follows from the fact that one may view it (as shown by Bade-
scu, see

badescu
[Bad04]) as an application of the classical Lefschetz theorem to the

intersection

(X × PN ) ∩∆ ∼= X,

where ∆ ⊂ PN × PN is the diagonal. In turn, an idea of Deligne (
del
[Del81],

f-l
[FL81]) shows that the diagonal ∆ ⊂ PN × PN behaves ‘like’ a complete
intersection, essentially because, under the standard birational map PN ×
PN 99K P2N , it maps to a linear subspace of P2N .

The philosophy is then that smooth subvarieties of small codimension
behave like complete intersections. This could be no accident if the well
known Hartshorne conjecture (

hartshorne
[Harts74]) were true.

Conjecture 5. (On subvarieties of small codimension, Hartshorne)HC1
Let X be a smooth subvariety of dimension n in PN , and assume that the
dimension is bigger than twice the codimension, n > 2(N − n): then X is a
complete intersection.

While the conjecture says nothing in the case of curves and surfaces and
is trivial in the case where n ≤ 4, since a codimension 1 subvariety is defined
by a single equation, it starts to have meaning for n ≥ 5 and c = N −n ≥ 2.

In the case where c = N −n = 2, then by a result of Serre one knows (see
ellia
[Ell07], page 143, also for a general survey of the Hartshorne conjecture for
codimension 2 subvarieties) that X is the zero set of a section s of a rank
2 holomorphic vector bundle V on PN (observe that in this codimension
one has that Pic(X) ∼= Pic(PN ), so that X satisfies the condition of being
subcanonical: this means that ωX = OX(d) for some d): in the case c = 2
the conjecture by Hartshorne is then equivalent to the conjecture
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Conjecture 6. (On vector bundles of rank 2 on projective space,
Hartshorne) Let V be a rank 2 vector bundle on PN , and assume thatHC2
N ≥ 7: then V is a direct sum of line bundles.

The major evidence for the conjecture on subvarieties of small codimen-
sion comes from the concept of positivity of vector bundles (

f-l
[FL81], also

laz
[Laz]). In fact, many construction methods of subvarieties X of small codi-
mension involve a realization of X as the locus where a vector bundle map
drops rank to an integer r, and X becomes singular if there are points of X
in the locus Σ where the rank drops further down to (r − 1).

The expected dimension of Σ is positive in the range of Hartshorne’s
conjecture, but nevertheless this is not sufficient to show that Σ ∩X is non
empty.

Hartshorne’s conjecture
HC1
5 is related to projections: in fact, for each pro-

jective variety X ⊂ PN there exists a linear projection PN 99K P2n+1 whose
restriction to X yields an embedding X ⊂ P2n+1: in other words, an embed-
ding where the codimension is equal to the dimenion n plus 1. The condition
of being embedded as a subvariety where the codimension is smaller or equal
than the dimension is already a restriction (for instance, not all curves are
plane curves, and smooth surfaces in P3 are simply connected by Lefschetz ’
theorem), and the smaller the codimension gets, the stronger the restrictions
are (as shown by theorem

BL
4).

Speaking now in more technical terms, a necessary condition for X to
be a complete intersection is that the sheaf of ideals IX be arithmetically
Cohen-Macaulay (CM, for short), which means that all higher cohomology
groups H i(PN , IX(d)) = 0 vanish for n ≥ i > 0 and ∀d ∈ Z. In view of the
exact sequence

0→ IX → OPN → OX → 0

the CM condition amounts to two conditions:
1) X is projectively normal, i.e., the linear system cut on X by polyno-

mials of degree d is complete ( H0(PN ,OPN (d))→ H0(OX(d)) is surjective
for all d ≥ 0)

2) H i(X,OX(d)) = 0 for all d ∈ Z, and for all 0 < i < n = dim(X).
In the case where X has codimension 2, and N ≥ 6 (see

ellia
[Ell07], cor. 4.2,

page 165), the condition of being a complete intersection is equivalent to
projective normality.

Linear normality is the case d = 1 and means that X is not obtained as the
projection of a non-degenerate variety from a higher dimensional projective
space PN+1. This part of Hartshorne’s conjecture is the only one which has
been verified: a smooth subvariety with n ≥ 2c−1 = 2(N−n)−1 is linearly
normal (theorem of Zak,

zak
[Zak81]).

For higher d, one considers the so-called formal neighbourhood of X:
denoting by N∨X := IX/I2

X the conormal bundle of X, one sees that, in
order to show projective normality, in view of the exact sequence

0→ Im+1
X (d)→ ImX (d)→ Symm(N∨X)(d) ∼= (ImX /Im+1

X )(d)→ 0,

a crucial role is played by the cohomology groups

Hq(Symm(N∨X)(d))).
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We refer the reader to
PPS
[PPS87] for a discussion of more general Nakano type

vanishing statements of the form Hq(Symm(N∨X)(d))⊗Ωp
X) (these could be

implied by very strong curvature properties on the normal bundle, see also
laz
[Laz]).

Observe finally that the theorems of Lefschetz have been also extended to
the case of singular varieties (see

g-mp
[GoMP88],

fultonAMS
[Ful87]), but we shall not need

to refer to these extensions in the present paper.

2. Algebraic topology: non existence and existence of
continuous maps

The first famous achievements of algebraic topology were based on func-
toriality, which was used to infer the nonexistence of certain continuous
maps.

The Brouwer’s fixed point theorem says that every continuous self map
f : Dn → Dn, where Dn = {x ∈ Rn||x| ≤ 1} is the unit disk, has a fixed
point. The argument is by contradiction: otherwise, letting φ(x) be the
intersection of the boundary Sn−1 of Dn with the half line stemming from
f(x) in the direction of x, φ would be a continuous map

φ : Dn → Sn−1, s.t. φ|Sn−1 = IdSn−1 .

The key point is to show that the reduced homology group Hn−1(Sn−1,Z) ∼=
Z, while Hn−1(Dn,Z) = 0, the disc being contractible; after that, denoting
by ι : Sn−1 → Dn the inclusion, functoriality of homology groups, since
φ ◦ ι = IdSn−1 , would imply 0 = Hn−1(φ) ◦Hn−1(ι) = Hn−1(IdSn−1) = IdZ,
the desired contradiction.

Also well known is the Borsuk-Ulam theorem, asserting that there is no
odd continuous function F : Sn → Sm for n > m (odd means that F (−x) =
−F (x)).

Here there are two ingredients, the main one being the cohomology alge-
bra, and its contravariant functoriality: to any continuous map f : X → Y
there corresponds an algebra homomorphism

f∗ : H∗(Y,R) = ⊕dim(Y )
i=0 H i(Y,R)→ H∗(X,R),

for any ring R of coefficients.
In our case one takes as X := PnR = Sn/{±1}, similarly Y := PmR =

Sm/{±1} and lets f be the continuus map induced by F . One needs to show
that, choosing R = Z/2Z, then the cohomology algebra of real projective
space is a truncated polynomial algebra, namely:

H∗(PnR,Z/2Z) ∼= (Z/2Z)[ξn]/(ξn+1
n ).

The other ingredient consists in showing that

f∗([ξm]) = [ξn],

[ξm] denoting the residue class in the quotient algebra.
One gets then the desired contradiction since, if n > m,

0 = f∗(0) = f∗([ξm]m+1) = f∗([ξm])m+1 = [ξn]m+1 6= 0.
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Notice that up to now we have mainly used that f is a continuous map
f := PnR → PmR , while precisely in order to obtain that f∗([ξm]) = [ξn] we
must make use of the hypothesis that f is induced by an odd function F .

This property can be interpreted as the property that one has a commu-
tative diagram

Sn → Sm

↓ ↓
PnR → PmR

which exhibits the two sheeted covering of PnR by Sn as the pull-back of the
analogous two sheeted cover for PmR . Now, as we shall digress soon, any such
two sheeted covering is given by a homomorphism of H1(X,Z/2Z)→ Z/2Z,
i.e., by an element in H1(X,Z/2Z), and this element is trivial if and only if
the covering is trivial (that is, homeomorphic to X× (Z/2Z), in other words
a disconnected cover).

This shows that the pull back of the cover, which is nontrivial, corresponds
to f∗([ξm]) and is nontrivial, hence f∗([ξm]) = [ξn].

As we saw already in the first section, algebraic topology attaches to a
good topological space homology groups Hi(X,R), which are covariantly
functorial, a cohomology algebra H∗(X,R) which is contravariantly func-
torial, and these groups can be calculated, by virtue of the Mayer Vietoris
exact sequence and of excision (see any textbook), by chopping the space
in smaller pieces. In particular, these groups vanish when i > dim(X).
But to X are also attached the homotopy groups πi(X). The common fea-
ture is that homotopic maps induce the same homomorphisms on homology,
cohomology, and homotopy.

We are, for our purposes, more interested to the more mysterious homo-
topy groups, which, while not necessarily vanishing for i > dim(X), enjoy
however a fundamental property.

Recall the definition due to Whitney and Steenrod (
steenrod
[Stee51]) of a fibre

bundle. In the words of Steenrod, the notion of a fibre bundle is a weakening
of the notion of a product, since a product X × Y has two continuous
projections pX : X × Y → X, and pY : X × Y → Y , while a fibre bundle
E over B with fibre F has only one projection, p = pB : E → B and its
similarity to a product lies in the fact that for each point x ∈ B there is
an open set U containing x, and a homeomorphism of p−1

B (U) ∼= U × F
compatible with both projections onto U .

The fundamental property of fibre bundles is that there is a long exact
sequence of homotopy groups

. . .→ πi(F )→ πi(E)→ πi(B)→ πi−1(F )→ πi−1(E)→ πi−1(B)→ . . .

where one should observe that πi(X) is a group for i ≥ 1, an abelian group
for i ≥ 2, and for i = 0 is just the set of arc-connected components of X (we
assume the spaces to be good, that is, locally arcwise connected, connected,
semilocally simply connected, see

greenberg
[Greenb67]).

The special case where the fibre F has the discrete topology is the case of
a covering space, which is called the universal covering if moreover π1(E)
is trivial.

Special mention deserves the following more special case.
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kp1 Definition 7. Assume that E is arcwise connected, contractible (hence all
homotopy groups πi(E) are trivial), and that the fibre F is discrete, so that
all the higher homotopy groups πi(B) = 0 for i ≥ 2, while π1(B) ∼= π0(F ) =
F . Then one says that B is a classifying space K(π, 1) for the group π =
π1(B).

In general, given a group π, a CW complex B is said to be a K(π, 1) if
πi(B) = 0 for i ≥ 2, while π1(B) ∼= π.

Example 8. The easiest examples are:
(1) the real torus Tn := Rn/Zn is a classifying space K(Zn, 1) for the

group π = Zn;
(2) a complex projective curve C of genus g ≥ 2 is a classifying space

K(πg, 1), since by the uniformization theorem its universal covering
is the Poincaré upper half plane H := {z ∈ C|Im(z) > 0} and its
fundamental group π1(C) is isomorphic to the group

πg := 〈〈α1, β1, . . . αg, βg|Πg
1[αi, βi] = 1〉〉,

quotient of a free group with 2g generators by the normal subgroup
generated by the relation Πg

1[αi, βi];
(3) a classifying space K(Z/2Z, 1) is given by the inductive limit P∞R :=

limn→∞ PnR. To show this, it suffices to show that S∞ := limn→∞ S
n

is contractible or, equivalently, that the identity map is homotopic
to a constant map.

We do this as follows 2: let σ : R∞ → R∞ be the shift opera-
tor, and first define a homotopy of the identity map of R∞ \ {0}
to the constant map with value e1. The needed homotopy is the
composition of two homotopies:

F (t, v) := (1− t)v + tσ(v), 0 ≤ t ≤ 1,

F (t, v) := (2− t)σ(v) + (t− 1)e1, 1 ≤ t ≤ 2, ∀v ∈ R∞.
Then we simply project the homotopy from R∞ \ {0} to S∞ con-

sidering F (t,v)
|F (t,v)| .

These classifying spaces, although not unique, are unique up to homotopy-
equivalence (we use the notation X ∼h.e. Y to denote homotopy equiva-
lence: this means that there exist continuous maps f : X → Y, g : Y → X
such that both compositions f ◦ g and g ◦ f are homotopic to the identity).

Therefore, given two classifying spaces for the same group, they not only
do have the same homotopy groups, but also the same homology and coho-
mology groups. Thus the following definition is well posed.

Definition 9. Let Γ be a finitely presented group, and let BΓ be a classifying
space for Γ: then the homology and cohomology groups and algebra of Γ are
defined as

Hi(Γ,Z) := Hi(BΓ,Z), H i(Γ,Z) := H i(BΓ,Z), H∗(Γ,Z) := H∗(BΓ,Z),

and similarly for other rings of coefficients instead of Z.

2following a suggestion of Marco Manetti
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Remark 10. The concept of a classifying space BG is indeed more general:
the group G could also be a Lie group, and then, if EG is a contractible space
over which G has a free (continuous) action, then one defines BG := EG/G.

The typical example is the simplest compact Lie group G = S1: then,
keeping in mind that S1 = {z ∈ C||z| = 1}, we take as EG the space

ES1 := S(C∞) = limn→∞S(Cn) = limn→∞{w ∈ Cn||w| = 1}.

Classifying spaces, even if often quite difficult to construct explicitly, are
very important because they guarantee the existence of continuous maps!
We have more precisely the following (cf.

Spanier
[Span66], Theorem 9, page 427,

and Theorem 11, page 428)

classifying map Theorem 11. Let Y be a ‘nice’ topological space, i.e., Y is homotopy-
equivalent to a CW-complex, and let X be a nice space which is a K(π, 1)
space: then, choosing base points y0 ∈ Y, x0 ∈ X, one has a bijective corre-
spondence

[(Y, y0), (X,x0)] ∼= Hom(π1(Y, y0), π1(X,x0)), [f ] 7→ π1(f),

where [(Y, y0), (X,x0)] denotes the set of homotopy classes [f ] of continuous
maps f : Y → X such that f(y0) = x0 (and where the homotopies F (y, t)
are also required to satisfy F (y0, t) = x0, ∀t ∈ [0, 1]).

In particular, the free homotopy classes [Y,X] of continuous maps are
in bijective correspondence with the conjugacy classes of homomorphisms
Hom(π1(Y, y0), π) (conjugation is here inner conjugation by Inn(π) on the
target).

Observe that, quite generally, the universal covering Eπ of a classifying
space Bπ := K(π, 1) associates (by the lifting property) to a continuous
map f : Y → Bπ a π1(Y )-equivariant map f̃

f̃ : Ỹ → Eπ,

where the action of π1(Y ) on Eπ is determined by the homomorphism φ :=
π1(f) : π1(Y )→ π = π1(Bπ).

Moreover, any ϕ : π1(Y ) → π = π1(Bπ) determines a fibre bundle Eϕ
over Y with fibre Eπ:

Eϕ := (Ỹ × Eπ)/π1(Y )→ Y = (Ỹ )/π1(Y ) = Y,

where the action of γ ∈ π1(Y ) is as follows: γ(y′, v) = (γ(y′), ϕ(γ)(v)).
While topology deals with continuous maps, when dealing with manifolds

more regularity is wished for. For instance, when we choose for Y a differen-
tiable manifold M , and the group π is abelian and torsion free, say π = Zr,
then a more precise incarnation of the above theorem is given by the De
Rham theory.

In fact, a homomorphism ϕ : π1(Y )→ Zr factors through the Abelianiza-
tionH1(Y,Z) of the fundamental group. SinceH1(Y,Z) = Hom(H1(Y,Z),Z),
φ is equivalent to giving an element in

φ ∈ H1(Y,Z)r ⊂ H1(Y,R)r ∼= H1
DR(Y,R)r,

where H1
DR(Y,R) is the quotient space of the space of closed differentiable

1-forms modulo exact 1-forms.
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In this case the classifying space is a real torus

Tr := Rr/Zr.
Observe however that to give ϕ : π1(Y ) → Zr it is equivalent to give its r
components ϕi, i = 1, . . . , r, which are homomorphisms into Z, and giving a
map to Tr := Rr/Zr is equivalent to giving r maps to T1 := R/Z: hence we
may restrict ourselves to consider the case r = 1.

Let us sketch the basic idea of the previous theorem
classifying map
11 in this special

case. Let us assume that Y is a cell complex, and define as usual Y j to be
its j-th skeleton, the union of all the cells of dimension i ≤ j.

Since the fundamental group of Y is generated by the free group F :=
π1(Y 1), we get a homomorphism Φ : F → Z inducing φ. For each 1-cell
γ ∼= S1 we send γ → S1 according to the map z ∈ S1 7→ zm ∈ S1, where
m = Φ(γ).

In this way we get a continuous map f1 : Y 1 → S1, and we want to extend
it inductively to Y j for each j. Now, assume that f is already defined on Z,
and that you are attaching an n-cell to Z, according to a continuous map
F : ∂(Dn) = Sn−1 → Z. In order to extend f to Z ∪F Dn it suffices to
extend the map f ◦ F to the interior of the disk Dn. This is possible once
the map f ◦ F : Sn−1 is homotopic to a constant map. Now, for n = 2,
this condition holds by assumption: since F (S1) yields a relation for π1(Y ),
therefore its image under φ must be equal to zero.

For higher n, n ≥ 3, it suffices to observe that a continuous map h :
Sn−1 → S1 extends to the interior always: since Sn−1 is simply connected,
hence h lifts to a continuous map h′ : Sn−1 → R, and we can extend h′ to
Dn by setting

h(x) := |x|h(
x

|x|
)

(h is then the composition of h′ with the projection R→ R/Z = S1).
In general, when both Y and the classifying space X ( as T1 here) are

differentiable manifolds, then each continuous map f : Y → X is homotopic
to a differentiable map F . Take in fact X ⊂ RN and observe that the
implicit function theorem implies that there is a tubular neighbourhood
X ⊂ TX ⊂ RN diffeomorphic to a tubular neighbourhood of X embedded
as the 0-section of the normal bundle NX of the embedding X ⊂ RN .

Therefore, approximating the function f : Y → RN by a differentiable
function f ′′ with values in TX , we can use the bundle projection NX → X
to project f ′′ to a differentiable function F : Y → X, and similarly we can
project the natural homotopy between f and f ′′, f(y) + tf ′′(y) to obtain a
homotopy between f and F .

Once we have a differentiable map F : Y → T1 = R/Z, we simply take
the lift F̃ : Ỹ → R, and the differential dF̃ descends to a closed differential
form η on Y such that its integral over a closed loop γ is just φ(γ).

We obtain the

Proposition 12. Let Y be a differentiable manifold, and let also X be a
differentiable manifold which is a K(π, 1) space: then, choosing base points
y0 ∈ Y, x0 ∈ X, one has a bijective correspondence

[(Y, y0), (X,x0)]diff ∼= Hom(π1(Y ), π), [f ] 7→ π1(f),
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where [(Y, y0), (X,x0)] denotes the set of differential homotopy classes [f ] of
differentiable maps f : Y → X such that f(y0) = x0.

In the case where X is a torus T r = Rr/Zr, then f is obtained as the
projection onto T r of

φ̃(y) :=
∫ y

y0

(η1, . . . , ηr), ηj ∈ H1(Y,Z) ⊂ H1
DR(Y,R).

Remark 13. In the previous proposition, ηj is indeed a closed 1-form, rep-
resenting a certain De Rham cohomology class with integral periods ( i.e.,∫
γ ηj = ϕ(γ) ∈ Z, ∀γ ∈ π1(Y )). Therefore f is defined by

∫ y
y0

(η1, . . . , ηr)
mod (Zr). Moreover, changing ηj with another form ηj+dFj in the same co-
homology class, one finds a homotopic map, since

∫ y
y0

(ηj + tdFj) =
∫ y
y0

(ηj)+
t(Fj(y)− Fj(y0)).

Before we dwell into a review of results concerning higher regularity of
the classifying maps, we consider in the next section the basic examples of
projective varieties which are classifying spaces.

3. Projective varieties which are K(π, 1)

The following are the easiest examples of projective varieties which are
K(π, 1)’s.

(1) Projective curves C of genus g ≥ 2.
By the Uniformization theorem, these have the Poincaré upper

half plane H := {z ∈ C|Im(z) > 0} as universal quotient, hence they
are compact quotients C = H/Γ, where Γ ⊂ PGL(2,C) is a discrete
subgroup isomorphic to the fundamental group of C, π1(C) ∼= πg.
Here

πg := 〈〈α1, β1, . . . αg, βg|Πg
1[αi, βi] = 1〉〉

contains no elements of finite order, hence it follows that necessarily
Γ acts freely on H. Moreover, the quotient must be compact, oth-
erwise C would be homotopically equivalent to a bouquet of circles,
hence H2(C,Z) = 0, a contradiction, since H2(C,Z) ∼= H2(πg,Z) ∼=
Z, as one sees taking the standard realization of a classifying space
for πg by glueing the 2g sides of a polygon in the usual pattern.
Moreover, the complex orientation of C induces a standard genera-
tor [C] of H2(C,Z) ∼= Z, the so-called fundamental class.

(2) AV : = Abelian varieties.
More generally, a complex torus X = Cg/Λ, where Λ is a discrete

subgroup of maximal rank (isomorphic then to Z2g), is a Kähler
classifying space K(Z2g, 1), the Kähler metric being induced by the
translation invariant Euclidean metric

∑g
1 dzj ⊗ dzj .

For g = 1 one gets in this way all projective curves of genus
g = 1; but, for g > 1, X is in general not projective: it is pro-
jective, and called then an Abelian Variety, if it satisfies the Rie-
mann bilinear relations. These amount to the existence of a pos-
itive definite Hermitian form H on Cg whose imaginary part A
( i.e., H = S + iA), takes integer values on Λ × Λ. In modern
terms, there exists a positive line bundle L on X, with Chern class
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A ∈ H2(X,Z) = H2(Λ,Z) = ∧2(Hom(Λ,Z)), whose curvature form,
equal to H, is positive (the existence of a positive line bundle on a
compact complex manifold X implies that X is projective algebraic,
by Kodaira’s theorem,

kodemb
[Kod54]).

(3) LSM : = Locally symmetric manifolds.
These are the quotients of a bounded symmetric domain D by a

cocompact discrete subgroup Γ ⊂ Aut(D) acting freely. Recall that
a bounded symmetric domain D is a bounded domain D ⊂⊂ Cn

such that its group Aut(D) of biholomorphisms contains for each
point p ∈ D, a holomorphic symmetry σp such that σp(p) = p, and
such that the derivative of σp at p is equal to −Id. This property
implies that Aut(D)0 (the connected component of the identity) is
transitive onD , and one can writeD = G/K, whereG is a connected
Lie group, and K is a maximal compact subgroup.

The two important properties are:
(3.1) D splits uniquely as the product of irreducible bounded sym-

metric domains.
(3.2) each such D is contractible, since there is a Lie subalgebra

L of the Lie algebra G of G such that the exponential map is a
homeomorphism L ∼= D. Hence X is a classifying space for the
group Γ ∼= π1(X).

Bounded symmetric domains were classified by Elie Cartan in
Cartan
[Car35], and they are a finite number for each dimension n.

Recall the notation for the irreducible domains:
(i) In,p is the domain D = {Z ∈Mn,p(C) : Ip −t Z · Z > 0}.

(ii) IIn is the intersection of the domain In,n with the subspace of
skew symmetric matrices.

(iii) IIIn is instead the intersection of the domain In,n with the
subspace of symmetric matrices.

(iv) The Cartan - Harish Chandra realization of a domain of type
IVn in Cn is the subset D defined by the inequalities (compare
Helgason2
[Helga78], page 527)

|z2
1 + z2

2 + · · ·+ z2
n| < 1 ,

1 + |z2
1 + z2

2 + · · ·+ z2
n|2 − 2

(
|z1|2 + |z2|2 + · · ·+ |zn|2

)
> 0 .

(v) D16 is the exceptional domain of dimension d = 16.
(vi) D27 is the exceptional domain of dimension d = 27.
We refer the reader to

Helgason2
[Helga78], Theorem 7.1 page 383 and ex-

ercise D, pages 526-527, and
Roos
[Roos00] page 525 for a list of these

irreducible bounded symmetric domains, and a description of all of
them as homogeneous spaces G/K. In this context the domains are
also called Hermitian symmetric spaces of non compact type.
Each of these is contained in the so-called compact dual, which is
an Hermitian symmetric spaces of compact type. The easiest exam-
ple is, for type I, the Grassmann manifold. For type IV, the compact
dual of D is the hyperquadric Qn ⊂ Pn+1 defined by the polynomial∑n−1

j=0 X
2
j − X2

n − X2
n+1. Notice that SO0(n, 2) ⊂ Aut(Qn). The
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Borel embedding j : D → Qn is given by

j(z1, · · · , zn) = [2z1 : 2z2 : · · · : 2zn : i(Λ− 1) : Λ + 1] ,

where Λ := z2
1 + · · · + z2

n. The map j identifies the domain D with
the SO0(n, 2)-orbit of the point [0 : 0 : · · · : 1 : i] ∈ Qn, i.e. D ∼=
SO0(n, 2)/SO(n)× SO(2).

Among them are the so called bounded symmetric domains of
tube type, which are biholomorphic to a tube domain, a general-
ized Siegel upper halfspace TC = V⊕

√
−1C where V is a real vector

space and C ⊂ V is a symmetric cone, i.e., a self dual homogeneous
convex cone containing no full lines.

In the case of type III domains, the tube domain is Siegel’s upper
half space:

Hg := {τ ∈ Mat(g, g,C)|τ =t τ, Im(τ) > 0},
a generalisation of the upper half-plane of Poincaré.

Borel proved in
Bo63
[Bore63] that for each bounded symmetric domain

D there exists a compact free quotient X = D/Γ, called a compact
Clifford-Klein form of the symmetric domain D.

A classical result of J. Hano (see
Hano
[Hano57] Theorem IV, page 886,

and Lemma 6.2, page 317 of
milnorcurv
[Mil76]) asserts that a bounded homo-

geneous domain that is the universal cover of a compact complex
manifold is symmetric.

(4) A particular, but very explicit case of locally symmetric manifolds
is given by the VIP : = Varieties isogenous to a product.

These were studied in
isogenous
[Cat00], and they are defined as quotients

X = (C1 × C2 × · · · × Cn)/G

of the product of projective curves Cj of respective genera gj ≥ 2 by
the action of a finite group G acting freely on the product.

In this case the fundamental group of X is not so mysterious and
fits into an exact sequence

1→ π1(C1 × C2 × · · · × Cn) ∼= πg1 × · · · × πgn → π1(X)→ G→ 1.

Such varieties are said to be of the unmixed type if the group
G does not permute the factors, i.e., there are actions of G on each
curve such that

γ(x1, . . . , xn) = (γx1, . . . , γxn), ∀γ ∈ G.
Equivalently, each individual subgroup πgj is normal in π1(X).

(5) Kodaira fibrations f : S → B.
Here S is a smooth projective surface and all the fibres of f are

smooth curves of genus g ≥ 2, in particular f is a differentiable fibre
bundle. Unlike for the examples above, where C = (C1 × C2)/G→
C2/G is a holomorphic fibre bundle with fibre C1 if G acts freely on
C2, the second defining property for Kodaira fibrations is that the
fibres are not all biholomorphic to each other.

These Kodaira fibred surfaces S are very interesting topological
objects: they were constructed by Kodaira (

Kodsurf
[Kod67]) as a counterex-

ample to the conjecture that the index (of the cup product in middle
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cohomology) would be multiplicative for fibre bundles. In fact, for
curves the pairing H1(C,Z) × H1(C,Z) → H2(C,Z) ∼= Z is skew
symmetric, hence it has index zero; while Kodaira showed that the
index of the cup product H2(S,Z) × H2(S,Z) → H4(S,Z) ∼= Z is
strictly positive.

The fundamental group of S fits obviously into an exact sequence:

1→ πg → π1(S)→ πb → 1,

where g is the fibre genus and b is the genus of the base curve B,
and it is known that b ≥ 2, g ≥ 3 (see

CR
[CatRol09], also for more

constructions and a thorough discussion of their moduli spaces).
By simultaneous uniformization (

Bers
[Bers60]) the universal covering

S̃ of a Kodaira fibred surface S is biholomorphic to a bounded do-
main in C2 (fibred over the unit disk ∆ := {z ∈ C||z| < 1} with
fibres isomorphic to ∆), which is not homogeneous.

(6) Hyperelliptic surfaces: these are the quotients of a complex torus of
dimension 2 by a finite group G acting freely, and in such away that
the quotient is not again a complex torus.

These surfaces were classified by Bagnera and De Franchis (
BdF
[BdF08],

see also
Enr-Sev
[ES09] and

bpv
[BPHV]) and they are obtained as quotients

(E1×E2)/G where E1, E2 are two elliptic curves, and G is an abelian
group acting on E1 by translations, and on E2 effectively and in such
a way that E2/G ∼= P1.

(7) In higher dimension we define the Generalized Hyperelliptic Varieties
(GHV) as quotients A/G of an Abelian Variety A by a finite group
G acting freely, and with the property that G is not a subgroup of
the group of translations. Without loss of generality one can then
assume that G contains no translations, since the subgroup GT of
translations in G would be a normal subgroup, and if we denote
G′ = G/GT , then A/G = A′/G′, where A′ is the Abelian variety
A′ := A/GT .

We propose instead the name Bagnera-De Franchis (BdF)
Varieties for those quotients X = A/G were G contains no transla-
tions, and G is a cyclic group of order m, with generator g (observe
that, when A has dimension n = 2, the two notions coincide, thanks
to the classification result of Bagnera-De Franchis in

BdF
[BdF08]).

A concrete description of such Bagnera-De Franchis varieties is
given in the following section.

4. A trip around Bagnera-de Franchis Varieties and
group actions on Abelian Varieties

4.1. Bagnera-de Franchis Varieties. Let A/G be a Generalized
Hyperelliptic Variety. An easy observation is that any g ∈ G is
induced by an affine transformation x 7→ αx + b on the universal
cover, hence it does not have a fixed point on A = V/Λ if and only
if there is no solution of the equation

∃x ∈ V, g(x) ≡ x ( mod Λ)
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⇔ ∃x ∈ V, λ ∈ Λ, (α− Id)x = λ− b.
This remark implies that 1 must be an eigenvalue of α for all non
trivial transformations g ∈ G.

Since α ∈ GL(Λ) ∼= GL(2n,Z), the eigenspace V1 = Ker(α − Id)
is a complex subspace defined over Q, hence we have an Abelian
subvariety

A1 ⊂ A,A1 := V1/Λ1, Λ1 := (V1 ∩ Λ).

While what we said up to now was valid for any complex torus, we
use now the property that A is an Abelian variety to invoke Poincaré
’s complete reducibility theorem, so that we can split

V = V1 ⊕ V2, V2 := (V1)⊥, A2 := V2/Λ2, Λ2 := (V2 ∩ Λ).

We get then an isogeny A1 × A2 → A, with kernel T := Λ/(Λ1 ⊕
Λ2). Observe that T ∩Aj = {0}, j = 1, 2.

In view of the splitting V = V1 ⊕ V2, we can write, after a change
of the origin in the affine space V2,

α(v1 + v2) = v1 + α2v2, g(v) = v1 + b1 + α2v2, b1 ∈ V1, b1 /∈ Λ.

If α2 has order equal to m, then necessarily the image of b1 has
order exactly m in A, by virtue of our assumption that G contains
no translations. In other words, b1 induces a translation on A1 of
order exactly m.

Now, g lifts naturally to A1 ×A2, by

g(a1, a2) = (a1 + [b1], α2a2),

where [b1] is the class of b1 in A1.
We reach the conclusion that X = A/G = ((A1 × A2)/T )/G,

where T is the finite group of translations T = Λ/(Λ1 ⊕ Λ2).
Conversely, given such an automorphism g of A1×A2, it descends

to A := (A1×A2)/T if and only if the linear part of g sends T to T .
Denote now by Tj the (isomorphic) image of T → Aj : then T ⊂

T1 × T2 is the graph of an isomorphism φ : T1 → T2, hence the
condition which allows g to descend to A is that:

(∗∗)(Id×α2)(T ) = T ⇔ α2 ◦ φ = φ⇔

⇔ (α2 − Id) ◦ φ = 0⇔ (α2 − Id)T2 = 0.

We are in the position to illustrate the standard example, before
we give the more general more complete description of BdF varieties.

The basic example is the one where m = 2, hence α2 is scalar
multiplication by (−1). Then φ = −φ implies that T2, T1 are 2-
torsion subgroups. Then also 2[b1] = 0 implies that [b1] is a 2-torsion
element. However [b1] cannot belong to T1, else g : A→ A would be
induced by

(a1, a2) 7→ (a1 + [b1], α2a2) ≡ (a1, α2a2 − φ([b1]) ( mod T ),

which has a fixed point on A.
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We conclude that the standard example of Bagnera-de Franchis
Varieties of order m = 2 is the following:

X = A/g,

A := (A1×A2)/T, T = {(t1, φ(t1))}, Tj ⊂ Aj [2], φ : T1
∼= T2, β1 ∈ A1[2]\T1,

g : A→ A, g(a1, a2) = (a1 + β1,−a2).
In order to conclude appropriately the above discussion, we give some

useful definition.

Definition 14. We define first a Bagnera-de Franchis manifold (resp.: va-
riety) of product type as a quotient X = A/G where A = (A1 × A2),
A1, A2 are complex tori (resp.: Abelian Varieties), and G ∼= Z/m is a cyclic
group operating freely on A, generated by an automorphism of the form

g(a1, a2) = (a1 + β1, α2(a2)),

where β1 ∈ A1[m] is an element of order exactly m, and similarly α2 :
A2 → A2 is a linear automorphism of order exactly m without 1 as eigen-
value. (these conditions guarantee that the action is free). If moreover all
eigenvalues of α2 are primitive m-th roots of 1, we shall say that X = A/G
is a primary Bagnera-de Franchis manifold.

We have the following proposition, giving a characterization of Bagnera-
De Franchis varieties.

Proposition 15. Every Bagnera-de Franchis variety X = A/G, where
G ∼= Z/m contains no translations, is the quotient of a Bagnera-de Franchis
variety of product type, (A1 ×A2)/G by any finite subgroup T of (A1 ×A2)
which satisfies the following properties:

1) T is the graph of an isomorphism between two respective subgroups
T1 ⊂ A1, T2 ⊂ A2,

2) (α2 − Id)T2 = 0
3) if g(a1, a2) = (a1 +β1, α2(a2)), then the subgroup of order m generated

by β1 intersects T1 only in {0}.
In particular, we may write X as the quotient X = (A1×A2)/(G×T ) by

the abelian group G× T .

4.2. Actions of a finite group on an Abelian variety. Assume that
we have the action of finite group G on a complex torus A = V/Λ. Since
every holomorphic map between complex tori lifts to a complex affine map
of the respective universal covers, we can attach to the group G the group
of affine transformations Γ which fits into the exact sequence:

0→ Λ→ Γ→ G→ 1.
Γ consists of all affine transformations of V which lift transformations of the
group G.

affinetype Proposition 16. The above group Γ determines the real affine type of the
action of Γ on V (respectively: the rational affine type of the action of Γ on
Λ⊗Q) , in particular the above exact sequence determines the action of G
up to a real affine isomorphism of A (resp.: a rational affine isomorphism
of (Λ⊗Q)/Λ).
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Proof.
It is clear that V = Λ ⊗Z R as a real vector space, and we denote by

VQ := Λ⊗Q. Let

Λ′ := ker(αL : Γ→ GL(VQ) ⊂ GL(V )),

G1 := Im(αL : Γ→ GL(VQ)).
Λ′ is obviously Abelian, contains Λ, and maps isomorphically onto a lattice
Λ′ ⊂ V .

In turn V = Λ′ ⊗Z R, and, if G′ := Γ/Λ′, then G′ ∼= G1 and the exact
sequence

0→ Λ′ → Γ→ G′ → 1,
since we have an embedding G′ ⊂ GL(Λ′), shows that the affine group
Γ ⊂ Aff(Λ′) ⊂ Aff(V ) is uniquely determined (Γ is the inverse image of G′

under Aff(Λ′)→ GL(Λ′)).
There remains only to show that Λ′ is determined by Γ as an abstract

group, independently of the exact sequence we started with. In fact, one
property of Λ′ is that it is a maximal abelian subgroup, normal and of finite
index.

Assume that Λ′′ has the same property: then their intersection Λ0 := Λ′∩
Λ′′ is a normal subgroup of finite index, in particular Λ0⊗ZR = Λ′⊗ZR = V ;
hence Λ′′ ⊂ ker(αL : Γ→ GL(V )) = Λ′, where αL is induced by conjugation
on Λ0

By maximality Λ′ = Λ′′.
�

Observe that, in order to obtain the structure of a complex torus on V/Λ′,
we must give a complex structure on V which makes the action of G′ ∼= G1

complex linear.
In order to study the moduli spaces of the associated complex manifolds,

we introduce therefore a further invariant, called Hodge type, according to
the following definition.

HodgeT Definition 17. (i) Given a faithful representation G → Aut(Λ), where Λ
is a free abelian group of even rank 2n, a G- Hodge decomposition is a
G-invariant decomposition

Λ⊗ C = H1,0 ⊕H0,1, H0,1 = H1,0.

(ii) Write Λ⊗ C as the sum of isotypical components

Λ⊗ C = ⊕χ∈Irr(G)Uχ.

Write also Uχ = Wχ ⊗Mχ, where Wχ is the irreducible representation cor-
responding to the character χ, and Mχ is a trivial representation whose
dimension is denoted nχ.

Write accordingly V := H1,0 = ⊕χ∈Irr(G)Vχ, where Vχ = Wχ ⊗M1,0
χ .

Then the Hodge type of the decomposition is the datum of the dimen-
sions

ν(χ) := dimCM
1,0
χ

corresponding to the Hodge summands for non real representations (observe
in fact that one must have: ν(χ) + ν(χ̄) = dim(Mχ)).
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Hodgetype Remark 18. Given a faithful representation G→ Aut(Λ), where Λ is a free
abelian group of even rank 2n, all the G- Hodge decompositions of a fixed
Hodge type are parametrized by an open set in a product of Grassmannians.
Since, for a non real irreducible representation χ one may simply chooseM1,0

χ

to be a complex subspace of dimension ν(χ) of Mχ, and for Mχ = (Mχ),
one simply chooses a complex subspace M1,0

χ of middle dimension. Then the
open condition is just that (since M0,1

χ := M1,0
χ ) we want Mχ = (M1,0

χ ) ⊕
(M0,1

χ ), or, equivalently, Mχ = (M1,0
χ )⊕ (M1,0

χ̄ ).

4.3. The general case where G is Abelian. Assume now that G is
Abelian, and consider the linear representation

ρ : G→ GL(V ).

We get a splitting

V = ⊕χ∈G∨Vχ = ⊕χ∈XVχ,

where G∨ := Hom(G,C∗) = {χ : G → C∗} is the dual group of characters
of G, Vχ is the χ-eigenspace of G ( for each v ∈ Vχ,ρ(g)(v) = χ(g)v), and X
is the set of characters χ such that Vχ 6= 0.

As we saw, the condition that the action of G is free implies the following
condition

(1) ∀g ∈ G, ∃χ ∈ G∨, χ(g) = 1,⇔ ∪χ∈X ker(χ) = G,

while we may assume that G contains no translations, i.e., that ρ is injective
(equivalently , X spans G∨).

With the above in mind, we pass to consider the case where G is cyclic,
the case where the quotient variety shall be called a Bagnera- de Franchis
variety.

4.4. Bagnera-de Franchis Varieties of small dimension. In view of the
discussion made in the previous section, we can see a Bagnera-de Franchis
variety as the quotient of one of product type, since the actions of T and g
commute (by the property α2 ◦ φ = φ).

Dealing with appropriate choices of T is the easy part, since, as we saw,
the points t2 of T2 satisfy the property α2(t2) = t2. It suffices to choose
T2 ⊂ A2[∗] := ker(α2 − IdA2), which is a finite subgroup of A2, and then to
pick an isomorphism ψ : T2 → T1 ⊂ A1, such that T1 := Im(ψ) ∩ 〈〈β1〉〉 =
{0}.

Let us then restrict ourselves to consider Bagnera-de Franchis varieties of
product type.

We show now how to further reduce to the investigation of primary
Bagnera-de Franchis varieties.

In fact, in the case of a BdF variety of product type, Λ2 is a G-module,
hence a module over the group ring

R := R(m) := Z[G] ∼= Z[x]/(xm − 1).

This ring is in general far from being an integral domain, since indeed it
can be written as a direct sum of cyclotomic rings, which are the integral
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domains defined as Rm := Z[x]/Pm(x). Here Pm(x) is the m-th cyclotomic
polynomial

Pm(x) = Π0<j<m,(m,j)=1(x− εj),
where ε = exp(2πi/m).

Then
R(m) = ⊕k|mRk.

The following elementary lemma, together with the splitting of the vector
space V as a direct sum of eigenspaces for g, yields a decomposition of A2

as a direct product A2 = ⊕k|mA2,k of G -invariant Abelian subvarieties A2,k

on which g acts with eigenvalues of order precisely k.

Lemma 19. Assume that M is a module over a ring R = ⊕kRk.
Then M splits uniquely as a direct sum M = ⊕kMk such that Mk is an

Rk-module, and the R-module structure is obtained through the projection
R→ Rk.

Proof. We can write the identity in R as a sum of idempotents 1 = Σkek,
where ek is the identity of Rk, and ekej = 0 for j 6= k.

Then each element w ∈M can be written as

w = 1w = (Σkek)w = Σkekw =: Σkwk.

Hence Mk is defined as ekM .
�

In the situation where we have a primary Bagnera-de Franchis variety Λ2

is a module over the integral domain R := Rm := Z[x]/Pm(x),
Since Λ2 is a projective module, a classical result (see

Milnor
[Mil71], lemmas 1.5

and 1.6) is that Λ2 splits as the direct sum Λ2 = Rr ⊕ I of a free module
with an ideal I ⊂ R, and it is indeed free if the class number h(R) = 1
(to see for which integers m this occurs, see the table in

washington
[Was82], page 353

). To give a complex structure to A2 := (Λ2 ⊗Z R)/Λ2 it suffices to give a
decomposition Λ2 ⊗Z C = V ⊕ V̄ , such that the action of x is holomorphic,
which is equivalent to asking that V is a direct sum of eigenspaces Vλ, for
λ = εj a primitive m-th root of unity.

Writing U := Λ2 ⊗Z C = ⊕Uλ, the desired decomposition is obtained by
choosing, for each eigenvalue λ, a decomposition Uλ = U1,0

λ ⊕U
0,1
λ such that

U1,0
λ = U0,1

λ̄
.

The simplest case (see
cacicetraro
[Caci93] for more details) is the one where I =

0, r = 1, hence dim(Uλ) = 1, so that we have only a finite number of
complex structures, depending on the choice of the ϕ(m)/2 indices j such
that Uεj = U1,0

εj
. The above discussion does however leave open the following

important question (see however
LR
[LaRe04] for some partial results).

Question: when is then A2 an Abelian variety ?
Observe that the classification in small dimension is possible thanks to

the observation that the Z- rank of R (or of any ideal I ⊂ R) cannot exceed
the real dimension of A2: in other words we have

ϕ(m) ≤ 2(n− 1),

where ϕ(m) is the Euler function, which is multiplicative for relatively prime
numbers, and satisfies ϕ(pr) = (p− 1)pr−1 when p is a prime number.
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For instance, when n ≤ 3, then ϕ(m) ≤ 4, and ϕ(pr) ≤ 4 iff p = 3, 5, r = 1,
or p = 2, r ≤ 3.

Hence, for n ≤ 3, it is only possible m = 3, 4, 6, ϕ(m) = 2, or m =
5, 8, 10, 12, ϕ(m) = 4. The classification is then made easier by the fact that,
in the above range for m, R is a P.I.D., hence every torsion free module is
free. In particular Λ2 is a free R-module.

The classification for n = 4, since we must have ϕ(m) ≤ 6, is going to
include also the case m = 7, 9.

We are not aware of literature dedicated to a precise classification of
Bagnera-de Franchis varieties, or generalised hyperelliptic varieties, at least
in dimension > 3 (see however

UchidaYoshihara
[UY76] and

Lange
[Lan01] for results in dimension

3). Observe that the hypothesis that G is a finite group allows to find a
G-invariant Hermitian metric on V , hence the affine group Γ extension of
Λ by G is a Bieberbach group, and in each dimension we have only a finite
number of those.

We end this section mentioning some elementary results which are useful
to locate the BdF varieties in the classification theory of algebraic varieties.

Proposition 20. The Albanese variety of a Bagnera-de Franchis variety
X = A/G is the quotient A1/(T1 + 〈〈β1〉〉)

Proof. Observe that the Albanese variety H0(Ω1
X)∨/Im(H1(X,Z)) of

X = A/G is a quotient of the vector space V1 by the image of the funda-
mental group of X (actually of its abelianization, the first homology group
H1(X,Z)): since the dual of V1 is the space of G-invariant forms on A,
H0(Ω1

A)G ∼= H0(Ω1
X).

We also observe that there is a well defined map X → A1/(T1 + 〈〈β1〉〉),
since T1 is the first projection of T . The image of the fundamental group
of X contains the image of Λ, which is precisely the extension of Λ1 by the
image of T , namely T1. Since we have the exact sequence

1→ Λ = π1(A)→ π1(X)→ G→ 1

the image of the fundamental group of X is generated by the image of Λ
and by the image of the transformation g, which however acts on A1 by
translation by β1 = [b1]. �

Remark 21. Unlike the case of complex dimension n = 2, there are Bagnera-
de Franchis varieties X = A/G with trivial canonical divisor, for instance
some examples are given by:

1) any BdF variety which is standard (i.e., m = 2) and is such that A2

has even dimension has trivial canonical divisor, as well as
2) some BdF varieties X = A/G = (A1 × A2)/(T ×G) whose associated

product type BdF variety Y = (A1 × A2)/G is primary and elementary
(meaning that Λ2

∼= Rm). For instance, when m = p is an odd prime,
there is a primary and elementary BdF variety if and only if, given the set
of integers {1, 2, . . . , [p−1

2 ]}, there is a partition of it into two sets whose
respective sums are the same: for m = 7, it suffices to choose {1, 2, 4}, i.e.,
we set V = H1,0 := U1 ⊕ U2 ⊕ U4, whereas for m = 17 there are many
choices, consisting of the union of two doubletons of the form {j, 9− j}.
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We do not further consider the question of determining exactly the case
where the divisor KX is trivial, also because this question can be asked also
for the more general case where the action of G is not free (see

Oguiso
[OS01] for a

classification in dimension n = 3).

5. Orbifold fundamental groups and rational K(π, 1)’s

5.1. Orbifold fundamental group of an action. In the previous section
we have considered quotients X = A/G of a complex torus A = V/Λ by the
free action of a finite group G. In this case the affine group Γ fitting into
the exact sequence

1→ Λ = π1(A)→ Γ→ G→ 1

equals π1(X).
We have also seen that we have the same exact sequence in the more

general case where the action of G is no longer free, and that the group Γ
determines in general the affine action of Γ on the real affine space V (resp.
on the rational affine space Λ ⊗ Q) and that, once the Hodge type of V is
fixed, these varieties are parametrized by a connected complex manifold.

In the case where the action of G is no longer free, we would like to
remember the group Γ, in view of its importance, even if it is no longer a
‘bona fide’ fundamental group. This can be done through a more general
correspondence which associates to the pair of X and the group action of
G a group Γ which is called the orbifold fundamental group and can be
defined in many ways (see

DM
[Del-Most93],

isogenous
[Cat00]). Here is one.

Definition 22. Let Z be a ‘good’ topological space, i.e., arcwise connected
and semi-locally 1-connected, so that there exists the universal cover D of Z.
Then we have Z = D/π where π := π1(Z); denote p : D → Z the quotient
projection.

Assume now that a group G acts properly discontinuously on Z, and set
X := Z/G. Then we define the orbifold fundamental group of the quotient
of Z by G as the group of all the possible liftings of the action of G on D,
more precisely:

πorb1 (Z,G) := {γ : D → D|∃g ∈ G, s.t. p ◦ γ = g ◦ p}

Remark 23. (1) We obtain an exact sequence, called orbifold fundamental
group exact sequence,

(∗ ∗ ∗) 1→ π1(Z)→ πorb1 (Z,G)→ G→ 1

since for each g ∈ G we have a lifting γ of g, because D is the universal
cover, so its associated subgroup is the identity, hence the lifting property
is ensured. Moreover the lifting is uniquely determined, given base points
z0 ∈ Z, y0 ∈ D, with p(y0) = z0, by the choice of y ∈ p−1({z0}) with
γ(y0) = y.

(2) In the case where the action of G is free, then πorb1 (Z,G) = π1(Z/G) =
π1(X).

(3) If G acts properly discontinuously on Z, then Γ := πorb1 (Z,G) acts
also properly discontinuously on D: in fact the defining property that, for
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each compact K ⊂ D, Γ(K,K) := {γ|γ(K) ∩K 6= ∅} is finite, follows since
p(K) is compact, and since π acts properly discontinuously.

(4) If the space Z is a K(π, 1), i.e., a classifying space Z = Bπ, then
(***) determines the topological type of the G-action. The group Γ acts
by conjugation on π, and this yields an homomorphism G → Out(π) =
Aut(π)/ Inn(π), and we just have to recall that the topological action of
γ ∈ Γ is determined by its action on π, taken up to Inn(π) if we do not keep
track of the base point.

In fact there is a bijection between homotopy classes of self maps of Z
and homomorphisms of π, taken of course up to inner conjugation (inner
conjugation is the effect of changing the base point, and if we do not insist
on taking pointed spaces, i.e., pairs (Z, z0) the action of a continuous map on
the fundamental group is only determined up to inner conjugation). Clearly
a homeomorphism ϕ : Z → Z yields then an associated element π1(ϕ) ∈
Out(π).

(5) Even if not useful for computations, one can still interpret the exact
sequence (***) as an exact sequence for the fundamental groups of a tower of
covering spaces, using the standard construction for equivariant cohomology
that we shall discuss later.

Just let BG = EG/G be a classifying space, and consider the free product
action of G on Z × EG.

Then we have a tower of covering spaces

(D × EG)→ (Z × EG)→ (Z × EG)/G,

where D×EG is contractible, and is the universal cover of Y := (Z×EG)/G,
such that π1(Y ) ∼= πorb1 (Z,G).

Of course, the above definitions seem apparently unrelated to the fun-
damental group of X, however we can take the maximal open set U ′ ⊂ D
where Γ := πorb1 (Z,G) acts freely. Indeed U ′ = p−1(U), where U is the open
set U := Z \ {z|Gz := Stab(z) 6= {IdG}}.

The conclusion is that U ′/Γ = U/G =: U ′′ ⊂ X, hence we get exact
sequences

1→ π1(U)→ π1(U ′′)→ G→ 1,

1→ π1(U ′)→ π1(U ′′)→ Γ→ 1.

We make now the hypothesis that D, hence also Z,X are normal complex
spaces, in particular they are locally contractible, and that the actions are
holomorphic: then we have surjections

π1(U ′′)→ π1(X), π1(U)→ π1(Z),

moreover π1(U ′)→ π1(D) = {1}, and finally we get

π1(Z) = π1(U)/π1(U ′), πorb1 (Z,G)→ π1(X)→ 0.

orbicurves Example 24. Assume that Z, X are smooth complex curves Z = C, X =
C ′. Then for each point pi ∈ X \ U ′′ we get the conjugate γi ∈ π1(U ′′) of
a circle around the point pi, and we have ker(π1(U ′′)→ π1(X)) = 〈〈{γi}〉〉,
i.e., the kernel is normally generated by these loops.
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Each of these loops γi maps to an element ci ∈ G, and we denote by mi

the order of the element (ci) in the group G. Then γmi
i ∈ π1(U), and it is

the conjugate of small circle around a point of Z \U , hence it maps to zero
in π1(Z). One can see that in this case

πorb1 (Z,G) = π1(U ′′)/〈〈{γmi
i }〉〉

and the kernel of the natural surjection onto π1(X) is normally generated
by the γi’s.

This means that, if the genus of X = C ′ is equal to g′, then the orbifold
fundamental group is isomorphic to the abstract group

πg′,m1,...,md
:= 〈〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γd|Πd

1γjΠ
g′

1 [αi, βi] = 1,

γm1
1 = · · · = γmd

d = 1〉〉.
And the orbifold exact sequence is an extension, called Nielsen extension,

of type

(NE) 1→ πg → πg′,m1,...,md
→ G→ 1.

A similar description holds in general (see
isogenous
[Cat00], definition 4.4 and

proposition 4.5, pages 25-26 ), at least when Z is a complex manifold.

5.2. Rational K(π, 1)’s: basic examples. An important role is also played
by Rational K(π, 1)’s, i.e., quasi projective varieties (or complex spaces)
Z such that

Z = D/π,
where D is a contractible manifold (or complex space) and the action of π
on D is properly discontinuous but not necessarily free.

While for a K(π, 1) we have H∗(G,Z) ∼= H∗(Z,Z), H∗(G,Z) ∼= H∗(Z,Z),
for a rational K(π, 1), as a consequence of proposition

finite
39 and of the spectral

sequence
tohoku
55, we have H∗(G,Q) ∼= H∗(Z,Q) and therefore also H∗(G,Q) ∼=

H∗(Z,Q).
Typical examples of such rational K(π, 1)’s are:
(1) quotients of a bounded symmetric domain D by a subgroup Γ ⊂

Aut(D) which is acting properly discontinuously (equivalently, Γ is
discrete); especially noteworthy are the case where Γ is cocompact,
meaning that X = D/Γ is compact, and the finite volume case
where the volume of X via the invariant volume form for D is finite.

(2) the moduli space of principally polarized Abelian Varieties, which is
an important special case of the above examples;

(3) the moduli space of curves Mg.
For the first example the property is clear (we observed already that such a
domain D is contractible).

For the second example it suffices to observe that the moduli space of
Abelian Varieties of dimension g, and with a polarization of type (d1, d2, . . . , dg)
is the quotient of Siegel’s upper half space

Hg := {τ ∈ Mat(g, g,C)|τ =t τ, Im(τ) > 0},
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which is biholomorphic to a bounded symmetric domain of type III in E.
Cartan’s classification (

Cartan
[Car35]), by the properly discontinuous action of the

group

Sp(D,Z) := {M ∈Mat(2g,Z)|tMDM = D},
where

D′ := diag(d1, d2, . . . , dg), D :=
(

0 D′

−D′ 0

)
and,

M :=
(
α β
γ δ

)
, τ 7→ −D′(D′α− τγ)−1(D′β − τδ).

In fact, these Abelian varieties are quotients Cg/Λ, where Λ is generated
by the columns of the matrices D,−τ, and the Hermitian form associated to
the real matrix =m(τ)−1 has imaginary part which takes integral values on
Λ×Λ, and its associated antisymmetric matrix in the chosen basis is equal
to D.

The quotient Ag,D′ := Hg/ Sp(D,Z) is not compact, but of finite volume,
and there exist several compactifications which are projective algebraic va-
rieties (see

Namikawa
[Nami80],

FaltingsChai
[Falt-C90],

gerardAV
[Geer13]).

5.3. The moduli space of curves. The most useful (and first fully suc-
cessful) approach to the moduli space of curves of genus g is to view it as a
quotient

(∗∗) Mg = Tg/Mapg

of a connected complex manifold Tg of dimension 3g − 3 + a(g), called Te-
ichmüller space, by the properly discontinuous action of the Mapping
class group Mapg (here a(0) = 3, a(1) = 1, a(g) = 0,∀g ≥ 2 is the com-
plex dimension of the group of automorphisms of a curve of genus g). A key
result (see

kerckhoff
[Ker83],

tromba
[Tro96],

hubbard
[Hub06]) is the

Theorem 25. Teichmüller space Tg is diffeomorphic to a ball, and the ac-
tion of Mapg is properly discontinuous.

Denoting as usual by πg the fundamental group of a compact complex
curve C of genus g, we have in fact a more concrete description of the
mapping class group:

(M) Mapg ∼= Out+(πg).
The above superscript + refers to the orientation preserving property.
There is a simple algebraic way to describe the orientation preserving

property: any automorphism of a group induces an automorphism of its
abelianization, and any inner automorphism acts trivially.

Hence Out(G) acts on Gab, in our particular case Out(πg) acts on πabg
∼=

Z2g, and Out+(πg) ⊂ Out(πg) is the inverse image of SL(2g,Z).
The above isomorphism (M) is of course related to the fact that C is a

K(πg, 1), as soon as g ≥ 1.
As we already discussed, there is a bijection between homotopy classes of

self maps of C and homomorphisms of πg, taken up to inner conjugation.
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Clearly a homeomorphism ϕ : C → C yields then an associated element
π1(ϕ) ∈ Out(πg).

Such a homeomorphism acts then on the second homology groupH2(C,Z) ∼=
Z[C], where the generator [C] corresponds to the orientation associated to
the complex structure; the condition H2(ϕ) = +1 that ϕ is orientation-
preserving translates into the above algebraic condition on ψ := π1(ϕ).
That the induced action ψab on the Abelianization π1(C)ab ∼= πabg

∼= Z2g

satisfies: ∧2g(ψab) acts as the identity on ∧2g(Z2g) ∼= Z.
In other words, the image of the product of commutators ε := Πj [αj , βj ]

is sent to a conjugate of ε.
Turning now to the definition of the Teichmüller space Tg, we observe

that it is somehow conceptually easier to give the definition of Teichmüller
space for more general manifolds.

5.4. Teichmüller space. Let M be an oriented real differentiable manifold
of real dimension 2n, for simplicity let’s assume that M is compact.

Ehresmann (
ACS
[Ehr49]) defined an almost complex structure on M as

the structure of a complex vector bundle on the real tangent bundle TMR:
namely, the action of

√
−1 on TMR is provided by an endomorphism

J : TMR → TMR, with J2 = −Id.
Equivalently, as done for the complex tori, one gives the decomposition

of the complexified tangent bundle TMC := TMR⊗R C as the direct sum of
the i, respectively −i eigenbundles:

TMC = TM1,0 ⊕ TM0,1 where TM0,1 = TM1,0.

The space AC(M) of almost complex structures, once TMR (hence all
associated bundles) is endowed with a Riemannian metric, is a subset of the
Fréchet space H0(M, C∞(End(TMR)) .

A closed subspace of AC(M) consists of the set C(M) of complex struc-
tures: these are the almost complex structures for which there are at each
point x local holomorphic coordinates, i.e., C-valued functions z1, . . . , zn
whose differentials span the dual (TM1,0

y )∨ of TM1,0
y for each point y in a

neighbourhood of x.
In general, the splitting

TM∨C = (TM1,0)∨ ⊕ (TM0,1)∨

yields a decomposition of exterior differentiation of functions as df = ∂f +
∂̄f , and a function is said to be holomorphic if its differential is complex
linear, i.e., ∂̄f = 0.

This decomposition d = ∂+ ∂̄ extends to higher degree differential forms.
The theorem of Newlander-Nirenberg (

NN
[New-Nir57]), first proven by Eck-

mann and Frölicher in the real analytic case (
E-F
[Eck-Fr51]) characterizes the

complex structures through an explicit equation:

NN Theorem 26. (Newlander-Nirenberg) An almost complex structure J
yields the structure of a complex manifold if and only if it is integrable,
which means ∂̄2 = 0.

Obviously the group of oriented diffeomorphisms of M acts on the space of
complex structures, hence one can define in few words some basic concepts.
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Definition 27. Let Diff+(M) be the group of orientation preserving dif-
feomorphisms of M , and let C(M) be the space of complex structures on M .
Let Diff0(M) ⊂ Diff+(M) be the connected component of the identity, the
so called subgroup of diffeomorphisms which are isotopic to the identity.

Then Dehn (
dehn
[Dehn38]) defined the mapping class group of M as

Map(M) := Diff+(M)/Diff0(M),

while the Teichmüller space of M , respectively the moduli space of complex
structures on M are defined as

T (M) := C(M)/Diff0(M), M(M) := C(M)/Diff+(M).

From these definitions follows that

M(M) = T (M)/Map(M).

The simplest examples here are two: complex tori and compact complex
curves. In the case of tori a connected component of Teichmüller space
(see

cat02
[Cat02] and also

cat04
[Cat04])) is an open set Tn of the complex Grassmann

Manifold Gr(n, 2n), image of the open set of matrices
{Ω ∈ Mat(2n, n; C) | (i)ndet(ΩΩ) > 0}.
This parametrization is very explicit: if we consider a fixed lattice Λ ∼=

Z2n, to each matrix Ω as above we associate the subspace of C2n ∼= Λ ⊗ C
given as

V = (Ω)(Cn),

so that V ∈ Gr(n, 2n) and Λ⊗ C ∼= V ⊕ V̄ .
Finally, to Ω we associate the torus

YV := V/pV (Λ) = (Λ⊗ C)/(Λ⊕ V̄ ),

pV : V ⊕ V̄ → V being the projection onto the first addendum.
It was observed however by Kodaira and Spencer already in their first ar-

ticle (
k-s58
[K-S58], and volume II of Kodaira’s collected works) that the mapping

class group SL(2n,Z) does not act properly discontinuously on Tn.

The case of compact complex curves C is instead the one which was
originally considered by Teichmüller.

In this case, if the genus g is at least 2, the Teichmüller space Tg is a
bounded domain, diffeomorphic to a ball, contained in the vector space of
quadratic differentials H0(C,OC(2KC)) ∼= C3g−3 on a fixed such curve C.

In fact, for each other complex structure on the oriented 2-manifold M
underlying C we obtain a complex curve C ′, and there is a unique extremal
quasi-conformal map f : C → C ′, i.e., a map such that the Beltrami distor-
tion µf := ∂̄f/∂f has minimal norm (see for instance

hubbard
[Hub06] or

ar-cor
[ArCor09]).

The fact that the Teichmüller space Tg is diffeomorphic to a ball (see
tromba
[Tro96] for a simple proof) is responsible for the fact that the moduli space
of curves Mg is a rational K(π, 1).

5.5. Singularities of Mg, I. Teichmüller’s theorem says that, for g ≥ 2,
Tg ⊂ C3g−3 is an open subset diffeomorphic to a ball. Moreover Mapg

∼=
Map(C) acts properly discontinuously on Tg, but not freely.
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The lack of freeness of this action is responsible of the fact that Mg is a
singular complex space (it is quasi-projective by the results of Mumford and
Gieseker, see

GIT
[Mum65],

EnsMath
[Mum77a]).

Therefore one has to understand when a class of complex structure C on
the manifold M is fixed by an element γ ∈Mapg. Since γ is represented by
the class of an orientation preserving diffeomorphism ϕ : M →M , it is not
difficult to see that this situation means that the diffeomorphism ϕ carries
the given complex structure to itself, or, in other words, the differential of
ϕ preserves the splitting of the complexified tangent bundle of M , TMC =
TM1,0 ⊕ TM0,1.

This is then equivalent to ∂̄ϕ = 0, i.e., ϕ is a biholomorphic map, i.e.,
ϕ ∈ Aut(C).

Conversely, let γ ∈ Aut(C) be a nontrivial automorphism. Consider then
the graph of γ, Γγ ⊂ C ×C, and intersect it with the diagonal ∆ ⊂ C ×C:
their intersection number must be a nonnegative integer, because intersec-
tion points of complex subvarieties carry always a positive local intersection
multiplicity.

This argument was used by Lefschetz to prove the following

Lemma 28. (Lefschetz’ lemma) If we have an automorphism γ ∈ Aut(C)
of a projective curve of genus g ≥ 2, then

γ ∼
h
idC ⇒ γ = idC .

Proof. The self intersection of the diagonal ∆2 equals the degree of the
tangent bundle to C, which is 2− 2g. If γ is homotopic to the identity, then
Γγ ·∆ = 2− 2g < 0, and this is only possible if Γγ = ∆, i.e., iff γ = idC .

�
In particular, since C is a classifying space Bπg for the group πg, γ : C →

C is such that the homotopy class of γ is determined by the conjugacy
class of π1(γ) : π1(C, y0) → π1(C, γ · y0) . Hence we get an injective group
homomorphism

ρC : Aut(C)→ Aut(πg)
Inn(πg)

= Out(πg) .

Actually, since a holomorphic map is orientation preserving, we have that
ρC : Aut(C)→ Out+(πg) = Mapg ∼=

Diff+(C)

Diff0(C)
.

The conclusion is then that curves with a nontrivial group of automor-
phisms Aut(C) 6= {IdC} correspond to points of Tg with a non trivial sta-
bilizer for the action of Mapg.

Remark 29. There is of course the possibility that the action of Mapg is
not effective, i.e., there is a normal subgroup acting trivially on Tg. This
happens exactly in genus g = 2, where every curve is hyperelliptic and
the normal subgroup of order 2 generated by the hyperelliptic involution is
exactly the kernel of the action.

The famous theorem of Hurwitz, gives a precise upper bound |Aut(C)| ≤
84(g− 1) for the cardinality of the stabilizer Aut(C) of C (that this is finite
follows also by the proper discontinuity of the action).
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Now, coming to Sing(Mg), we get that Mg is locally analytically isomor-
phic to a quotient ‘singularity’ C3g−3/Aut(C) (indeed, as we shall see, to
the quotient singularity of H1(ΘC)/Aut(C)) (at the origin).

Now, given a quotient singularity Cn/G, where G is a finite group, then
by a well known lemma by H. Cartan (

cartan
[Car57]) we may assume that G acts

linearly, and then a famous theorem by Chevalley (
chevalley
[Chev55] and Shephard-

Todd (
s-t
[S-T54]) says that the quotient Cn/G is smooth if and only if the

action of G ⊂ GL(n,C) is generated by pseudo-reflections, i.e., matrices
which are diagonalizable with (n − 1) eigenvalues equal to 1, and the last
one which is a root of unity.

Theorem 30. Let G ⊂ GL(n,C), let Gpr be the normal subgroup of G
generated by pseudo reflections, and let Gq be the factor group. Then

(1) the quotient Cn/Gpr is smooth,
(2) We have a factorization of the quotient map Cn → Cn/G as Cn →

(Cn/Gpr) ∼= Cn → Cn/Gq and Cn/G is singular if G 6= Gpr.

This result is particularly interesting in this situation, since the only
pseudo-reflection occurs for the case of the hyperelliptic involution in genus
g = 3.

Teichmüller theory can be further applied in order to analyse the fixed
loci of finite subgroups G of the mapping class group (see

kerckhoff
[Ker83],

tromba
[Tro96],

isogenous
[Cat00])

Theorem 31. (Refined Nielsen realization) Let G ⊂Mapg be a finiterefinedNR
subgroup. Then Fix(G) ⊂ Tg is a non empty complex manifold, diffeomor-
phic to a ball.

G-extension Remark 32. 1) The name Nielsen realization comes from the fact that
Nielsen (

nielsen
[Nielsen],

nielsen2
[Nielsen43],

nielsen3
[Nielsen44]) conjectured that any topological

action of a finite group G on a Riemann surface could be realized as a group
of biholomorphic automorphisms if and only if the action would yield an
embedding ρ : G→Mapg.

2) The question can be reduced to a question of algebra, by the following
observation.

The group πg, for g ≥ 2, has trivial centre: in fact, two commuting
hyperbolic transformations in PSL(2,R) can be simultaneously written as
Möbius transformations of the form z 7→ λz, z 7→ µz, hence if the first
transformation were in the centre of πg ⊂ PSL(2,R), the group πg would be
abelian, a contradiction.

Then πg ∼= Inn(πg) and from the exact sequence

1→ πg ∼= Inn(πg)→ Aut(πg)→ Out(πg)→ 1

and an injective homomorphism ρ : G → Mapg = Out+(πg) one can
pull-back an extension 3

1→ πg → Ĝ→ G→ 1.

3the same result holds without the assumption that ρ be injective, since it suffices to

consider the image G′ = Im(ρ), apply the pull-back construction to get 1→ πg → Ĝ′ →
G→ 1, and then construct Ĝ as the inverse image of the diagonal under the epimorphism
πg ×G→ G′ ×G′.
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4) The main question is to show that the group Ĝ is isomorphic to an
orbifold fundamental group of the form πg′,m1,...,md

. Because then we have a
Nielsen extension, and the epimorphism µ : πg′,m1,...,md

→ G→ 1 combined
with Riemann’s existence theorem finds for us a curve C over which G acts
with the given topological type (C is the ramified covering of a curve C ′ of
genus g′, branched on d points y1, . . . , yd and with monodromy µ).

5) Since πg is torsion free (hyperbolic elements in PSL(2,R) have infinite
order), we see that the branch points correspond to conjugacy classes of
cyclic subgroups of finite order in Ĝ, and that their order mi in Ĝ equals
the order of their image in G.

In turn, the question can be reduced to showing that there is a differen-
tiable action of the group G on the curve C inducing the topological action
ρ. There is the following 4

Lemma 33. Given ρ : G → Mapg = Diff+(C)/Diff0(C), if there is a
homomorphism ψ : G → Diff+(C) whose projection to Mapg is ρ, then
there is a complex curve with a G action of topological type ρ.

Proof. In fact, by Cartan’s lemma
cartan
[Car57], at each fixed point x ∈ C,

there are local coordinates such that in these coordinates the action of the
stabilizer Gx of x is linear (in particular, if we assume that the action of
G is orientation preserving, Gx ⊂ SO(2,R), and Gx is a cyclic group of
rotations).

Therefore, for each γ ∈ G, γ 6= 1G, the set of fixed points Fix(γ), which
is closed, is either discrete (hence finite), or it consists of a discrete set plus
a set (the points x ∈ Fix(γ) where the derivative is the identity) which is
open and closed. Since C is connected, the only possible alternative is that,
for γ 6= 1G, the set of fixed points Fix(γ) is finite.

Now, it is easy to see that the quotient C/G =: C ′ is a smooth Riemann
surface and we can take a complex structure on C ′ and lift it to C, so that
C ′ = C/G as complex curves.

�

Remark 34. 1) It is interesting to observe that one can view the orbifold
fundamental group, in the case of curves, as the quotient of a bona fide
fundamental group.

Let TC be the tangent bundle of the complex curve, and assume that G
has a differentiable action on C, so that G acts on TC, preserving the zero
section. We can further assume, by averaging a Riemannian metric on TC,
that G preserves the sphere bundle of TC,

SC := {v ∈ TC||v| = 1}.
Since each stabilizer Gx is a cyclic group of rotations, the conclusion is

that G acts on SC by a free action, and we get an exact sequence

(Seifert) 1→ π1(SC)→ π1(SC/G)→ G→ 1.

It is well known (see e.g.
localpi1
[Cat06]) that the fundamental group of the fibre

bundle SC is a central extension

1→ Z→ π1(SC)→ πg → 1,

4See
bcs13
[BCS13] for recent results concerning non finite groups.
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quotient of the direct product Z× F2g by the subgroup normally generated
by the relation

c2g−2Πg
1[αi, βi] = 1,

where c is a generator of the central subgroup 〈〈c〉〉 ∼= Z.
Taking the quotient by the subgroup 〈〈c〉〉 generated by c one obtains

the orbifold group exact sequence. The fibration SC/G → C ′ = C/G is a
so-called Seifert fibration, with fibres all homemorphic to S1, but the fibres
over the points yj are multiple of multiplicity mj .

Now, an injection G→ Out+(πg) determines an action on π1(SC) (send-
ing c to itself), an extension of the type we denoted (Seifert), and a topo-
logical action on the classifying space SC.

2) The main point of the proof of the Nielsen realization is however based
on analysis, and, more precisely, on the construction of a Morse function
f on Tg of class C1 which is G-invariant, strictly convex and proper, and
therefore has only one minimum.

The unique minimum must be G-invariant, hence we get a point C in
Fix(G). Since the function is strictly convex and proper, it does not have
other critical points, and it has only one minimum: therefore Morse theory
tells that Tg is diffeomorphic to a ball.

Now, in turn, the locus Fix(G) is a non empty submanifold, and the
group G acts nontrivially on the normal bundle of Fix(G) in Tg.

The same analysis applies to the restriction of the Morse function to any
connected component Y of Fix(G). The function has exactly one critical
point D, which is an absolute minimum on Y , hence Y is also diffeomorphic
to a ball.

To show that Fix(G) is connected it suffices to show that C = D, i.e.,
that D is also a critical point on the whole space Tg. But the derivative
of f at D is a G-invariant linear functional, vanishing on the subspace of
G-invariants: therefore the derivative of f at D is zero.

Hence Fix(G) = Y , as well as Tg, is diffeomorphic to a ball.
3) It may happen that Fix(G) may be also the fixed locus for a bigger sub-

group H ⊂Mapg. We shall see examples in another section. To determine
when this happens is an interesting question, fully answered by Cornalba in
the case where G is a cyclic group of prime order (

cornalba
[Cor87]) (this result is

the key to understanding the structure of the singular locus Sing(Mg)).
A partial answer to the question whether G is not a full subgroup (i.e.,

∃H ⊃ G, Fix(H) = Fix(G) was given by several authors, who clarified the
orbifold fundamental groups associated to the quotients C → C/G→ C/H
(
singer
[Sing72],

ries
[Ries93],

mssv
[MSSV01]).

5.6. Group cohomology and equivariant cohomology. The roots of
group cohomology go back to Jacobi and to the study of periodic meromor-
phic functions as quotients of quasi-periodic holomorphic functions; these
functions, which can more generally be taken as vector-valued functions
s : Cn → Cm, are solutions to the functional equation

s(x+ γ) = fγ(x)s(x),

where Λ ⊂ Cn is a discrete subgroup, ∀γ ∈ Λ ⊂ Cn, x ∈ Cn, fγ : Cn →
GL(m,C), and clearly fγ satisfies then the cocycle condition
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fγ+γ′(x) = fγ(x+ γ′)fγ′(x), ∀γ, γ′ ∈ Λ, ∀x ∈ Cn.

Later on, the ideas of Jacobi were generalised through the concept of
vector bundles, since the cocycle fγ(x) can be used to constructing a vector
bundle on the quotient manifold Cn/Λ taking a quotient of the trivial bundle
Cn × Cm → Cn by the relation

(x, v) ∼ (x+ γ, fγ(x)v),

and the cocycle relation just says that the above is an equivalence rela-
tion. The main difficulty classically consisted in simplifying as much as
possible the form of these cocycles, replacing fγ(x) by an equivalent one
φ(x+ γ)fγ(x)φ(x)−1, for φ : Cn → GL(m,C).

The construction can be vastly generalized by viewing any bundle on a
classifying space Y = BΓ, quotient of a contractible space X = EΓ, as the
quotient of the trivial bundle X × F by an action which covers the given
action of G on X, hence such that there exists fγ : X → Homeo(F ) with

γ(x, v) = (γ(x), fγ(x)(v))⇒ ∀γ, γ′,∀x ∈ X, fγ′γ(x) = fγ′(γ(x))fγ(x).

As remarked by David Mumford
mum-notices
[Mum11], classical mathematics led to

concrete understanding of 1-cocycles and 2-cocycles, hence of first and sec-
ond cohomology groups. But the general machinery of higher cohomology
groups is harder to understand concretely.

As always in mathematics, good general definitions help to understand
what one is doing, but explicit calculations remain often a hard task. Let
us concentrate first on the special case where we look at the singular coho-
mology groups of a classifying space.

In the case of a classifying space BΓ, we know that for each ring of
coefficients R,

H∗(Γ, R) = H∗(BΓ, R),
and for this it suffices indeed that

H∗(Γ,Z) = H∗(BΓ,Z).

Which side of the equation is the easiest one to get ahold of? The answer
depends of course by our knowledge of the group Γ and of the classifying
space BΓ, which is determined only up to homotopy equivalence.

For instance, we saw that an incarnation of B(Z/2) is given by the induc-
tive limit P∞R := limn→∞ PnR.

A topologist would just observe that P∞R is a CW-complex obtained
adding a cell σn in each dimension n, and with boundary map

∂(σ2n) = 2σ2n−1, ∂(σ2n−1) = 0 · σ2n−2, ∀n ≥ 1; .

Therefore H2i(Z/2,Z) = 0, H2i−1(Z/2,Z) = Z/2,∀i ≥ 1, and taking the
dual complex of cellular cochains one gets:

H2i(Z/2,Z) = Z/2, H2i−1(Z/2,Z) = 0, ∀i ≥ 1.

There are two important ways how this special calculation generalizes:
i) a completely general construction of a CW complex which is a classi-

fying space BΓ for a finitely presented group Γ,
ii) a completely algebraic definition of group cohomology.
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i): In fact, assume we are given a finite presentation of Γ as

Γ = 〈〈x1, . . . , xn|R1(x), . . . Rm(x)〉〉,

which means that Γ is isomorphic to the quotient of the free group Fn with
generators x1, . . . , xn by the minimal normal subgroup R containing the
words Rj ∈ Fn ( R is called the subgroup of relations, and it is said to be
normally generated by the relations Rj).

Then the standard construction of the 2-skeleton of BΓ is the CW-
complex BΓ2, of dimension two, which is obtained by attaching, to a bou-
quet of n circles (which correspond to the generators x1, . . . , xn), m 2-cells
whose respective boundary is the closed path corresponding to the word
Rj , ∀j = 1, . . . ,m.

For instance ,
Z/2 = Z/(2Z) = 〈〈x1|x2

1〉〉,

and the above procedure produces P2
R as 2-skeleton.

However, the universal cover of P2
R is the sphere S2, which has a homotopy

group π2(S2) ∼= Z, and we know that the higher (i ≥ 2) homotopy groups
πi(X) of a space equal the ones of its universal cover. Then a 3-cell is
attached to P2

R, obtaining P3
R, and one continues to attach cells in order to

kill all the homotopy groups. The same is done more generally to obtain BΓ
from the CW-complex BΓ2: 3-cells are attached in order to kill the second
homotopy groups, and one then obtains BΓ3; one obtains then BΓ4 adding
4-cells in order to kill π3(BΓ3), and so on.

The disadvantage of this construction is that from the third step onwards
it is no longer so explicit, since calculating homotopy groups is difficult.

An easy but important remark used in the proof of a theorem of Gromov
(see

Gromov
[Grom89],

Levico
[Cat96]) is that when the group π has few relations, which

more precisely means here n ≥ m+ 2, then necessarily there is an integer b
with 0 ≤ b ≤ m such that the rank of H1(Bπ,Z) equals n −m + b, while
rank(H2(Bπ,Z)) ≤ b : since by the above construction H2(Bπ2,Z) is the
kernel of a linear map ∂ : Zm → H1(Bπ1,Z) = Zn, whose rank is denoted
by (m− b), and we have a surjection H2(Bπ2,Z)→ H2(Bπ,Z) .

Hence, if we consider the cup product bilinear map

∪ : H1(Bπ,Z)×H1(Bπ,Z)→ H2(Bπ,Z),

for each ψ ∈ H1(Bπ,Z) the linear map φ 7→ ψ ∪ φ has a kernel of rank
≥ n−m ≥ 2. This means that each element ψ ∈ H1(Bπ,Z) is contained in
an isotropic subspace (for the cup product map) of rank at least 2.

It follows that if the fundamental group of a space X, Γ := π1(X) admits a
surjection onto π, then the induced classifying continuous map φ : X → Bπ
(see

classifying map
11) has the property

• that its induced action on first cohomology

H1(φ) : H1(Bπ,Z)→ H1(X,Z)

is injective (since H1(φ) : H1(X,Z)→ H1(Bπ,Z) is surjective)
• the image W of H1(φ) is such that each element w ∈W is contained

in an isotropic subspace of rank ≥ 2.
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We shall explain Gromov’s theorem, for the case where X is a Kähler
manifold, in the next section.

But let us return to the algebraic point of view (see for instance
BAII
[Jac80],

pages 355-362).
ii): Assume now that G is a group, so that we have the group algebra

A := Z[G]. Recall the functorial definition of group cohomology and of
group homology, which gives a high brow explanation for a rather concrete
definition we shall give later.

Definition 35. Consider the category of modules M over the group ring
A := Z[G] (i.e., of abelian groups over which there is an action of G, also
called G-modules).

Then there are two functors, the functor of invariants

M 7→MG := {w ∈M |g(w) = w ∀g ∈ G} = ∩g∈G ker(g − I),

associating to each module M the submodule of elements which are left fixed
by the action of G, and the functor of co-invariants

M 7→MG := M/(Σg∈GIm(g − I)),

associating to each module M the minimal quotient module on which the
action of G becomes trivial.

Both MG and MG are trivial G-modules, and one defines the cohomology
groups H i(G,M) as the derived functors of the functor of invariants, while
the homology groups Hi(G,M) are the derived functors of the functor of
co-invariants.

The relation of these concepts to homological algebra is furnished by the
following elementary lemma.

Lemma 36. Let Z be the trivial G-module, i.e., we consider the abelian
group Z with module structure such that every g ∈ G acts as the identity.

Then we have canonical isomorphisms

HomZ[G](Z,M) ∼= MG, M ⊗Z[G] Z ∼= MG,

given by the homomorphisms f 7→ f(1), respectively w ⊗ n 7→ [nw].
In particular, we have

H i(G,M) = ExtiZ[G](Z,M), Hi(G,M) = Tor
Z[G]
i (Z,M).

We illustrate now the meaning of the above abstract definition for the
case of group cohomology.

One can construct an explicit free resolution (a projective resolution would
indeed suffice) for the trivial A-module M = Z

. . . Ln → Ln−1 → . . .→ L1 → L0 → Z→ 0.

Then for each A-module M the cohomology groups Hn(G,M) are com-
puted as the cohomology groups of the complex

Hom(L0,M)→ Hom(L1,M)→ . . .→ Hom(Ln−1,M)→ Hom(Ln,M)→ . . . .

While the homology groups are calculated as the homology groups of the
complex

. . .→M ⊗Z[G] Li+1 →M ⊗Z[G] Li →M ⊗Z[G] Li−1 → . . . .
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For instance, if G is a cyclic group of order m, A = Z[x]/(xm−1) and the
free resolution of Z is given by free modules of rank one: the homomorphisms
are the augmentation ε : L0 → Z (defined by setting ε(Σgag · g) := Σgag)
and the scalar multiplications:

(x− 1) : L2n+1 → L2n, (1 + x · · ·+ xm−1) : L2n+2 → L2n+1,

in view of the fact that (x− 1)(1 + x · · ·+ xm−1) = xm − 1 ≡ 0 ∈ A.
The casem = 2 we saw before is a very special case, since thenA = Z⊕Zx,

with x2 = 1, hence on the trivial module Z = HomZ[G](Z[G],Z) (1− x) acts
as multiplication by 0, 1+x acts as multiplication by 2. But the same pattern
happens for all m: (1− x) acts as multiplication by 0, 1 + x · · ·+ xm−1 acts
as multiplication by m.

In particular, the homology groups can be calculated as

H2i(Z/m,Z) = 0, i ≥ 1, H2i+1(Z/m,Z) ∼= Z/m, i ≥ 0.

For more general groups there is a general complex, called the bar-complex,
which yields a resolution of the A-module Z.

It is easier to first give the concrete definition of the cohomology groups
(see also

godement
[God58]).

Definition 37. Given a group G and a A := Z[G]-module M , one defines
the group of i-cochains with values in M as:

Ci(G,M) := {f : Gi+1 →M |f(γg0, . . . , γgi) = γf(g0, . . . , gi)},
and the differential di : Ci(G,M) → Ci+1(G,M) through the familiar for-
mula

df(g0, . . . , gi) := Σi+1
0 (−1)jf(g0, . . . , ĝj , . . . , gi).

Then the groups H i(G,M) are defined as the cohomology groups of the
complex of cochains, that is,

H i(G,M) = ker(di)/Im(di−1).

Remark 38. 1) In group theory one gives a different, but equivalent for-
mula, obtained considering a cochain as a function of i instead of i + 1
variables, as follows:

ϕ(g1, . . . , gi) := f(1, g1, . . . , gi).

One observes in fact that, in view of equivariance of f with respect to left
translation on G, giving f is equivalent to giving ϕ.

Then the formula for the differential becomes asymmetrical

dϕ(g1, . . . , gi+1) = g1ϕ(g2, . . . , gi+1)− ϕ(g1g2, g3, . . . , gi+1)+

+ϕ(g1, g2g3, . . . , gi+1) . . . (−1)iϕ(g1, g2, g3, . . . , gi).
2) The second formula is more reminiscent of the classical formulae, and

indeed, for i = 0, yields

H0(G,M) = {x ∈M |gx− x = 0 ∀g ∈ G} = MG,

Z1(G,M) = {ϕ = ϕ(g)|g1ϕ(g2)− ϕ(g1g2) + ϕ(g1) = 0 ∀g1, g2 ∈ G},
B1(G,M) = {ϕ = ϕ(g)|∃x ∈M,ϕ(g) = gx−x}, H1(G,M) = Z1(G,M)/B1(G,M).

3) Hence, if M is a trivial G-module, then B1(G,M) = 0 and H1(G,M) =
Hom(G,M).
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We have been mainly interested in the case of Z-coefficients, however if
we look at coefficients in a field k, we have.

finite Proposition 39. Let G be a finite group, and let k be a field such that the
characteristic of k does not divide |G|. Then

H i(G, k) = 0 ∀i ≥ 1.

Proof. If M is a k[G]-module, we observe first that

MG ∼= HomZ[G](Z,M) ∼= Homk[G](k,M),

and then that the functor M 7→ MG is exact, because MG is a direct
summand of M (averaging v 7→ 1

|G|
∑

g∈G gv yields a projector with image
MG). Hence H i(G,M) = 0 ∀i ≥ 1.

�

5.7. Group homology, Hopf’s theorem, Schur multipliers. To give
some explicit formula in order to calculate homology groups, we need to
describe the bar-complex, which gives a resolution of the trivial module Z.

In order to relate it to the previous formulae for group cohomology, we
should preliminary observe that the group algebra Z[G] can be thought
of as the subalgebra of the space of functions a : G → Z generated by
the characteristic functions of elements of points (so that g ∈ Z[G] is the
function such that g(x) = 1 for x = g, else g(x) = 0, x 6= g. As well
known, multiplication on the group algebra corresponds to convolution of
the corresponding functions, f1 ∗ f2(x) =

∫
f1(xy−1)f2(y)dy.

It is then clear that the tensor product Z[G] ⊗Z M yields a space of
M -valued functions on G (all of them, if the group G is finite), and we
get a space of Z-valued functions on the i-th Cartesian product Gi+1 by
considering the (i+ 1)-fold tensor product

Ci := Z[G]⊗Z Z[G]⊗ · · · ⊗Z Z[G],

with Z[G]-module structure given by

g(x0 ⊗ · · · ⊗ xi) := g(x0)⊗ · · · ⊗ xi.
Definition 40. The bar-complex of a group G is the homology complex given
by the free Z[G]-modules Ci (a basis is given by

{(g1, . . . , gi) := 1⊗ g1 ⊗ · · · ⊗ gi)})
and with differential di : Ci → Ci−1 (obtained by dualizing the previously
considered differential for functions), defined by

di(g1, g2, . . . , gi) :=
:= g1(g2, . . . , gi)+Σi−1

1 (−1)j(g1, . . . gj−1, gjgj+1, . . . , gi)+(−1)i(g1, g2, . . . , gi−1).
The augmentation map ε : C0 = Z[G]→ Z shows then the the bar-complex

is a free resolution of the trivial Z[G]-module Z.

As a consequence, the homology groups Hn(G,Z) are then the homology
groups of the complex (Cn⊗Z[G]Z, dn), and one notices that, since Z[G]⊗Z[G]

Z ∼= Z, (observe in fact that g ⊗ 1 = 1 ⊗ g1 = 1 ⊗ 1), then Cn ⊗Z[G] Z is a
trivial Z[G]-module and a free Z-module with basis {(g1, . . . , gn)}.

The algebraic definition yields the expected result for i = 1.
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Corollary 41. H1(G,Z) = Gab = G/[G,G], [G,G] being as usual the sub-
group generated by commutators.

Proof. First argument, from algebra: we have

⊕g1,g2∈GZ(g1, g2)→ ⊕g∈GZg → Z

but the second homomorphism is zero, hence

H1(G,Z) = (⊕g∈GZg)/〈〈g1 − g2 − g1g2〉〉 = Gab,

since g1g2 ≡ g1 + g2.
Second argument, from topology: H1(X,Z) is the abelianization of the

fundamental group, so we just apply this to the case of X = BG, since
π1(BG) ∼= G.

�
The machinery of algebraic topology is also useful in order to show the

following ‘duality’ statement.

Schur Theorem 42. If G is a finite group there is an isomorphism between the
group H2(G,Z) and the group of ‘Schur multipliers’ H2(G,C∗).

Proof. Let us consider the exact sequence of groups

0→ Z→ C→ C∗ → 1,

and use that H i(G,C) = 0 for i ≥ 1 (see
BAII
[Jac80]).

Hence we have an isomorphism H2(G,C∗) ∼= H3(G,Z). Now, by the uni-
versal coefficient formula, the torsion subgroup of Hn(X,Z) equals the tor-
sion subgroup of Hn+1(X,Z). Now, just apply to the case X = BG, n = 2,
observing that the groups H i(G,Z), hence also the groups Hi(G,Z), are tor-
sion abelian groups for i ≥ 1 (sinceH i(G,R) = H i(BG,R) = H i(EG,R)G =
0). �

The calculation of the above group H2(G,Z) was achieved by Heinz Hopf
(
Hopf
[Hopf42]), and we shall sketch the underlying topological idea.

Theorem 43. (Hopf) Assume that we have a presentation of a group G
as the quotient G = F/R of a free group. Then

H2(G,Z) = ([F, F ] ∩R)/[F,R].

Proof. (Sketch)
Proof I (currently fashionable argument)
To the exact sequence of groups

1→ R→ F → G→ 1

there correspond continuous maps of classifying spaces. These are only
well defined up to homotopy, and using a small trick we can arrange the
corresponding maps to be the standard inclusion of a fibre into a fibre bundle.

More precisely, let BG = EG/G be a classifying space for G, and BF =
EF/F be a classifying space for F : since the group is free, BF shall be a
bouquet of circles. Moreover, since R is a subgroup of F , its classifying space
BR is a covering of BF , indeed it is BR = EF/R, and is a CW-complex
of dimension 1 (whence, the theorem of Nielsen that a subgroup R of a free
group F is also free).
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The surjection F → G yields an action of F on EG, which restricts to a
trivial action of R.

We use the construction of equivariant cohomology to obtain a new clas-
sifying space

B′F := (EF × EG)/F.
The projection of the product (EF × EG) → EG yields a fibre bundle

(EF × EG)/F → EG/G with fibre EF/R.
Hence an associated sequence of continuous maps

BR = EF/R→ (EF × EG)/F = B′F → EG/G = BG,

associated to the fibre bundle B′F → BG and with 1-dimensional fibre BR.
We obtain associated maps of first homology groups

H1(BR,Z) = R/[R,R]→ H1(BF,Z) = F/[F, F ]→ H1(BG,Z) = G/[G,G],

and since BR,B′F have vanishing homology groups Hi(,Z) for i ≥ 2, appli-
cation of the Serre spectral sequence for fibre bundles (

serre
[Ser64]) shows that

we have the exact sequence

0→ H2(G,Z)→ H1(BR,Z)F = (R/[R,R])F → F/[F, F ]→ G/[G,G]→ 0.

Now, the group of co-invariants (R/[R,R])F is the quotient of R/[R,R]
by the relations of the form frf−1 = r, or, equivalently, by the subgroup
[F,R] generated by the commutators frf−1r−1. In other words,

(R/[R,R])F = R/[F,R].

Now, from the exact sequences

(∗) 0→ H2(G,Z)→ R/[F,R]→ K → 0

and
0→ K → F/[F, F ]→ G/[G,G]→ 0,

since ker(F → G/[G,G]) = R[F, F ], we infer that

K = (R[F, F ])/[F, F ] = R/(R ∩ [F, F ]),

where the last equality follows from the third isomorphism theorem for
groups.

Since [F,R] ⊂ (R ∩ [F, F ]), Hopf’s theorem follows from (*) above.
Proof II (direct argument): follows from the following lemma, since

the kernel of R/[F,R]→ F/[F, F ] clearly equals (R ∩ [F, F ])/[F,R]. �
The relation between algebra and geometry in Hopf’s theorem is further

explained in lemma 2.5 of
CLP3
[CLP13].

Lemma 44. Let BG be a CW-complex which is a classifying space for the
group G = F/R, such that

i) its 1-skeleton BG1 has all the 1-cells in bijective correspondence with a
set of generators of F ,

ii) its 2-skeleton BG2 has all the 2-cells in bijective correspondence with a
set of generators of R (hence R/[R,R] is isomorphic to the relative homology
group H2(BG2, BG1,Z)).

Then the following exact sequence of relative homology

0→ H2(BG,Z)→ H2(BG,BG1,Z)→ H1(BG1,Z)→ H1(BG,Z)→ 0
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is isomorphic to

0→ ([F, F ] ∩R)/[F,R]→ R/[F,R]→ F/[F, F ]→ G/[G,G]→ 0.

Proof. (Sketch) The main point is to show that the obvious surjection

H2(BG2, BG1,Z)→ H2(BG,BG1,Z)

reads out algebraically as the surjection R/[R,R]→ R/[F,R].
In order to explain this, assume that {rj |j ∈ J} is a system of free gen-

erators of R. Now, BG3 is obtained attaching 3-cells in order to kill the
second homotopy group of BG2 which, in turn, by Hurewicz’ theorem, is
the second homology group of its universal cover ˜BG2. But it is then easy
to see that generators for H2( ˜BG2,Z) are obtained applying the covering
transformations of G = F/R to the 2-cells corresponding to the elements
{rj |j ∈ J}. One can then show that the boundaries of these 3-cells yield
relations on R/[R,R] which are exactly those of the form [a, rj ], for a ∈ F .

�

Example 45. For a finite cyclic group G = Z/m, F = Z, hence [F, F ] = 0,
H2(Z/m,Z) = 0 and the result fits with previous calculations.

The spectral sequence argument is however more powerful, and yields a
much more general result (see

weibel
[Weib94] and references therein).

Theorem 46. ( Lyndon-Hochshild-Serre spectral sequence) Let H
be any group, and R a normal subgroup, and let G = H/R be the factor
group.

Assume that A is an H-module, so that AH and AH are G-modules. Then
there are converging first quadrant spectral sequences

E2
p,q = Hp(G;Hq(R,A))⇒ Hp+q(H,A)

Ep,q2 = Hp(G;Hq(R,A))⇒ Hp+q(H,A)

Example 47. Assume that the group H is a metacyclic group, i.e., we have
the exact sequence

1→ R ∼= Z/n→ H → G ∼= Z/m→ 1.

As previously remarked, H2(Z/n,Z) = 0, H1(Z/n,Z) = Z/n, while
H0(Z/n,Z) is the trivial Z/m-module Z. Hence the spectral sequence has
many zeros, and reveals an exact sequence

Z/m→ H1(Z/m,Z/n)→ H2(H,Z)→ 0.

Let x be a generator of R ∼= Z/n, and y a generator of G ∼= Z/m, which we
shall identify to one of its lifts to H (the order of y may be assumed to be
equal to m if and only if the exact sequence splits, or, as one says H is split
metacyclic).

Now, conjugation by y sends x to xa, where (a, n) = 1, and we have also
am ≡ 1 ( mod n). Hence the G = Z/m-structure of R ∼= Z/n, is described
by y(b) = ab ∈ Z/n.

Tensoring with the bar-complex we find

⊕g1,g2∈G(Z/n(g1, g2))→ ⊕g∈G(Z/n)g → Z/n
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where however the last homomorphism is no longer the zero map, and its
image is just the image of multiplication by (a− 1), i.e.,

(a− 1)(Z/n) = (n, a− 1)Z/nZ.
In fact Z/n ∼= Z[G] ⊗Z[G] Z/n, with yi · 1 ≡ ai ∈ Z/n. Therefore we

obtain that H1(G,Z/n) is the quotient of the kernel of multiplication by
(a − 1), inside the direct sum ⊕g∈G(Z/n)g, by the subgroup generated by
g1g2 ≡ g1 + g1(1)g2.

Writing the elements in G multiplicatively, g1 = yi, g2 = yj , we get the
relations

yi+j ≡ yi + aiyj .

For i = 0 we get thus y0 = 0, and then inductively we find the relations

yi = (1 + · · ·+ ai−1)y, ∀1 ≤ i ≤ m− 1, 0 = ym = (1 + · · ·+ am−1)y

which are equivalent to the previous ones.
Hence H1(G,Z/n) ⊂ Z/(n, r), where we set r := (1 + · · · + am−1) =

(am− 1)/(a− 1), is the kernel of multiplication by (a− 1), hence it is cyclic
of order

d :=
1
n

(n, a− 1)(n, r).

The conclusion is that H2(H,Z) is a cokernel of Z/m→ Z/d.
Edmonds shows in

edmonds2
[Edm83], with a smart trick, that the map Z/m→ Z/d

is the zero map when we have a split metacyclic extension, hence H2(H,Z) ∼=
Z/d in this case. We shall show how to make the computation directly using
Hopf’s theorem: this has the advantage of writing an explicit generator
inside R/[F,R], a fact which shall be proven useful in the sequel.

5.8. Calculating H2(G,Z) via combinatorial group theory. We treat
again the case of a split metacyclic group H.
H = F/R, where F is a free group on two generators x, y, and the sub-

group R of relations is normally generated by

ξ := xn, η := ym, ζ := xayx−1y−1.

Since R is the fundamental group of the Cayley graph of H, whose vertices
corresponding to the elements of

H = {xiyj |0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1},
and R is a free group on mn+ 1 generators.

We use now the Reidemeister-Schreier algorithm (see
Magnusks
[MKS66]), which

shows that a basis of R is given by:

ηi := xiymx−i, ξ := xn, ξi,j := xiyjxy−jx−[i+aj ], 0 ≤ i ≤ n−1, 1 ≤ j ≤ m−1,

and where [b] ∈ {0, . . . , n − 1} is the unique positive representative of the
residue class of b in Z/n.

We want to calculateH2(G,Z) as the kernel ofR/[F,R]→ K → 0, keeping
in mind that, since F ab = F/[F, F ] is the free abelian group on generators
X,Y , then K = ker(F ab → Gab is generated by the images of ξ, η, ζ in F ab,
i.e., nX,mY, (a− 1)X.

We conclude that K is a free abelian group with basis (n, a − 1)X,mY,
and contains the free abelian group with basis nX,mY.



TOPOLOGICAL METHODS FOR MODULI 45

Our trick is then to observe that ξ 7→ nX, η = η0 7→ mY , hence H2(G,Z)
is the kernel of the surjection

Q := R/[F,R]/(Zξ + Zη))→ K/(Z(nX)⊕ Z(mY )) = (n, a− 1)Z/nZ→ 0.

This shall simplify our calculations considerably.
Observe that R/[F,R], since [R,R] ⊂ [F,R], is a quotient of Rab, a free

abelian group on generators Ξ,Ξi,j ,Θi, which are the respective images of
the elements ξ, ξi,j , ηi.

And it is the quotient by the relations of the form

r ∼ frf−1, r ∈ R, f ∈ F.

Down to earth, each generator is put to be equivalent to its conjugate by
x, respectively its conjugate by y.

Conjugation by x clearly sends ηi to ηi+1, for all i < n − 1, while
xηn−1x

−1 = xnymx−n = ξηξ−1, thus in the abelianization we get Θi = Θ,∀i,
and in our further quotient Q the classes of the Θi’s are all zero.

Conjugation of ξi,j by x makes

ξi,j ∼ xxiyjxy−jx−[i+aj ]x−1 = xi+1yjxy−jx−1−[i+aj ] = ξi+1,j or ξi+1,jξ
−1,

hence the classes of Ξi,j and of Ξi+1,j are the same. Therefore the class of
Ξi,j is always equal to the one of Ξ0,j .

Conjugation by yj of ξ = xn yields that the class of yjxny−j is trivial.
But, observing that the class of xn = ξ and all its conjugates is trivial, we
can consider the exponents of powers of x as just residue classes modulo n,
and avoid to use the square brackets. Then

yjxny−j = (yjxy−j)n ∼ (yjxy−jx−a
j
)(xa

j
yjxy−jx−2aj

) . . . (x(n−1)aj
yjxy−jx−na

j
),

which means that the class of nΞ0,j = 0. We denote by Zj the class of Ξ0,j .
Hence nZj = 0, and Q is generated by the classes Zj .

In the calculation of conjugation by y on Ξ0,j we observe that

ξi,j ∼ yyjxy−jx−[aj ]y−1 = (yj+1xy−j−1x−[aj+1])x[aj+1]yx−[aj ]y−1.

Hence

Zj ∼ yZjy−1 = Zj+1x
aj+1

yx−a
j
y−1 = Zj+1x

aj+1
yxy−1x−a

j−axa
j+ayx−a

j−1y−1 =

= Zj+1Z
k
1x

aj+1+kayx−a
j−ky−1.

For k = −aj we obtained the desired relation

Zj = Zj+1Z
−aj

1 ⇔ Zj+1 = ZjZ
aj

1 ,

which can be written additively as the one we had previously,

yi+1 ≡ yi + aiy.

The conclusion is that we have a cyclic group whose order is d := 1
n(n, a−

1)(n, r) and with generator n
(n,a−1)Z1, where Z1 is the class of ξ0,1 = yxy−1x−a.
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5.9. Sheaves and cohomology on quotients, linearizations. The method
of the bar-complex apparently settles the problem of calculating the coho-
mology groups of a K(G, 1) space, and also to calculate the cohomology
groups Hn(X,Q) for a rational K(G, 1) space X, except that one must have
a good knowledge of the group G, for instance a finite presentation does not
always suffice.

More generally, Grothendieck in
tohoku
[Groth57] approached the question of

calculating the cohomology of a quotient Y = X/G where Y is not neces-
sarily contractible. Using sheaf theory, one can reach a higher generality,
considering G-linearized sheaves, i.e. sheaves F on X with a lifting of the
action of G to F (this is analogue to taking cohomology groups on non
trivial G-modules).

Since this concept is very useful in algebraic geometry, and lies at the
heart of some important calculations, we shall try now to briefly explain it,
following Mumford’s treatment (

abvar
[Mum70]).

Assume that we have a vector bundle V on a quotient variety X/G.
Denote by p : X → X/G the quotient map and take the fibre product
p∗(V ) := V ×X/GX. We consider the action of G on V ×X, which is trivial
on the factor V , and the given one on X. In this way the action of G extends
to the pull back p∗(V ) = V ×X/GX of V , and the sections of V on X/G are
exactly seen to be the G-invariant sections of p∗(V ).

Now, a main goal is to construct interesting varieties as quotient varieties
X/G, and then study line bundles on them, and for this is quite useful the
following result.

Proposition 48. Let Y = X/G be a quotient algebraic variety, p : X → Y
the quotient map.

(1) Then there is a functor between (the category of) line bundles L′ on Y
and (the category of) G-linearized line bundles L on X, associating to L′ its
pull back p∗(L′). The functor L 7→ p∗(L)G is a right inverse to the previous
one, and p∗(L)G is invertible if the action is free, or if Y is smooth.

(2) Given a line bundle L on X, it admits a G-linearization if and only
if there is a Cartier divisor D on X which is G-invariant and such that
L ∼= OX(D) (observe that OX(D) = {f ∈ C(X)|div(f) + D ≥ 0} has an
obvious G-linearization).

(3) A necessary condition for the existence of the linearization is that

∀g ∈ G, g∗(L) ∼= L.
If this condition holds, defining the Thetagroup of L as:

Θ(L, G) := {(ψ, g)|g ∈ G, ψ : g∗(L) ∼= L isomorphism},
there is an exact sequence

1→ C∗ → Θ(L, G)→ G→ 1.

The splittings of the above sequence correspond to the G-linearizations of
L.

If the sequence splits, the linearizations are a principal homogeneous space
over the dual group Hom(G,C∗) =: G∗ of G (namely, each linearization
is obtained from a fixed one by multiplying with an arbitrary element in
Hom(G,C∗) =: G∗).



TOPOLOGICAL METHODS FOR MODULI 47

Proof. We only provide an argument for the last statement in (1), for
which we do not know of a precise reference. The question is local, hence
we may assume that P is a smooth point of X, and that G is equal to the
stabilizer of P . The invertible sheaf is locally isomorphic to OX , except that
this isomorphism does not respect the linearization. The G-linearization of
L corresponds then locally to a character χ : G → C∗. In particular, there
exists an integer m such that the induced linearization on L⊗m corresponds
to the trivial character on OX .

Let R be the ramification divisor of the quotient map p : X → Y = X/G,
and let X0 := X \ Sing(R), which is G-invariant. Set Y 0 := p(X0).

Step I: p∗(L)G is invertible on Y 0.
Indeed this is obvious on the open set which is the complement of the

branch set p(R). At the points of R which are smooth points, then the G
action can be linearized locally, and it is a pseudoreflection; so in this case
the action of G involves only the last variable, hence the result follows from
the dimension 1 case, where every torsion free module is locally free.

Step II. LetM := p∗(L)G. We claim thatM is invertible at every point.
Pick a point y not in Y 0 and a local holomorphic Stein neighbourhood U

of y, say biholomorphic to a ball. Then U0 := U∩Y 0 has vanishing homology
groups H i(U0,Z) for i = 1, 2. By the exponential sequence H1(U0,O∗Y ) ∼=
H1(U0,OY ), which is a vector space hence has no torsion elements exept the
trivial one. Since M⊗m is trivial on U0, we conclude that M is trivial on
U0. By Hartogs’ theorem there is then an isomorphism between G-invariant
sections of L on p−1(U) and sections of OY on U .

�
Thus, the question of the existence of a linearization is reduced to the

algebraic question of the splitting of the central extension given by the Theta
group. This question is addressed by group cohomology theory, as follows
(see

BAII
[Jac80]).

Proposition 49. An exact sequence of groups

1→M → Γ→ G→ 1,

where M is abelian, is called an extension. Conjugation by lifts of elements
of G makes M a G-module. Each choice of a lift eg ∈ Γ for every element
g ∈ G determines a 2-cocycle

ψ(g1, g2) := eg1eg2e
−1
g1g2 .

The cohomology class [ψ] ∈ H2(G,M) is independent of the choice of lifts,
and in this way H2(G,M) is in bijection with the set of strict isomorphism
classes of extensions 1 → M → Γ′ → G → 1 (i.e., one takes isomorphisms
inducing the identity on M and G). Whereas isomorphism classes of exten-
sions 1 → M ′ → Γ′ → G → 1 (they should only induce the identity on G)
are classified by isomorphism classes of pairs (M ′, ψ′).

In particular, we have that the extension is a direct product M×G if and
only if M is a trivial G-module (equivalenty, M is in the centre of Γ) and
the class [ψ] ∈ H2(G,M) is trivial.

Corollary 50. Let L be an invertible sheaf whose class in Pic(X) is G-
invariant. Then the necessary and sufficient condition for the existence of
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a linearization is the triviality of the extension class [ψ] ∈ H2(G,C∗) of the
Thetagroup Θ(G,L).

The group H2(G,C∗) is the group of Schur multipliers (see again
BAII
[Jac80],

page 369) , which for a finite group is, as we saw in theorem
Schur
42, another

incarnation of the second homology group H2(G,Z). It occurs naturally
when we have a projective representation of a group G. Since, from a ho-
momorphism G→ PGL(r,C) one can pull back the central extension

1→ C∗ → GL(r,C)→ PGL(r,C)→ 1⇒ 1→ C∗ → Ĝ→ G→ 1,

and the extension class [ψ] ∈ H2(G,C∗) is the obstruction to lifting the
projective representation to a linear representation G→ GL(r,C).

It is an important remark that, if the group G is finite, and n = ord(G),
then the cocycles take value in the group of roots of unity µn := {z ∈
C∗|zn = 1}.

Example 51. Let E be an elliptic curve, with the point O as the origin,and
let G be the group of two trosion points G := E[2] acting by translation on
E. The divisor class of 2O is never represented by aG-invariant divisor, since
all the G-orbits consist of 4 points, and the degree of 2O is not divisible by
4. Hence, L := OE(2O) does not admit a G-linearization. However, we
have a projective representation on P1 = P(H0(OE(2O)), where each non
zero element η1 of the group fixes 2 divisors: the sum of the two points
corresponding to ±η1/2, and its translate by another point η2 ∈ E[2].

The two group generators yield two linear transformations, which act on
V = Cx0 ⊕ Cx1 as follows:

η1(x0) = x1, η1(x1) = x0, η2(xj) = (−1)jxj .

The linear group generated is however D4, since

η1η2(x0) = x1, η1η2(x1) = −x0.

Example 52. The previous example is indeed a special case of the Heisen-
berg extension, and V generalizes to the Stone von Neumann representa-
tion associated to an abelian group G, which is nothing else that the space
V := L2(G,C) of square integrable functions on G (see

igusa
[Ig72],

abvar
[Mum70]).

G acts by translation f(x) 7→ f(x − g), G∗ acts by multiplication with
the given character f(x) 7→ f(x) · χ(x)), and the commutator [g, χ] acts by
the scalar multiplication with the constant χ(g).

The Heisenberg group is the group of automorphisms generated by G,G∗

and by C∗ acting by scalar multiplication, and there is a central extension

1→ C∗ → Heis(G)→ G×G∗ → 1,

whose class is classified by the C∗-valued bilinear form (g, χ) 7→ χ(g), an
element of

Λ2(Hom(G×G∗,C∗)) ⊂ H2(G×G∗,C∗).
The relation with Abelian varieties A = V/Λ is through the Thetagroup

associated to an ample divisor L.
In fact, since by the theorem of Frobenius the alternating form c1(L) ∈

H2(A,Z) ∼= ∧2(Hom(Λ,Z)) admits, in a suitable basis for Λ, the normal
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form

D :=
(

0 D′

−D′ 0

)
D′ := diag(d1, d2, . . . , dg), d1|d2| . . . |dg.

Then if one sets G := Zg/D′Zg, then L is invariant by translation by (G×
G∗) ∼= (G × G) ⊂ A, and the Thetagroup of L is just isomorphic to the
Heisenberg group Heis(G).

The nice part of the story is the following useful result, which was used
by Atiyah in the case of elliptic curves, to study vector bundles over these
(
atiyah
[At57]).

Heisenberg Proposition 53. Let G be a finite abelian group, and let V := L2(G,C) be
the Stone-von Neumann representation. Then V ⊗ V ∨ is a representation
of (G×G∗) and splits as the direct sum over all the characters of (G×G∗).

Proof. Since the centre C∗ of the Heisenberg group Heis(G) acts trivially
on V ⊗V ∨, V ⊗V ∨ is a representation of (G×G∗). Observe that (G×G∗) is
equal to its group of characters, and its cardinality equals to the dimension
of V ⊗ V ∨, hence it shall suffice, and it will be useful for applications, to
write for each character an explicit eigenvector.

We shall use the notation g, h, k for elements of G, and the notation χ, η, ξ
for elements in the dual group. Observe that V has two bases, one given
by {g ∈ G}, and the other given by the characters {χ ∈ G∗}. In fact, the
Fourier transform yields an isomorphism of the vector spaces V := L2(G,C)
and W := L2(G∗,C)

F(f) := f̂ , f̂(χ) :=
∫
f(g)(χ, g)dg.

The action of h ∈ G on V sends f(g) 7→ f(g−h), hence for the characteristic
functions in C[G], g 7→ g+h. While η ∈ G∗ sends f 7→ f ·η, hence χ 7→ χ+η,
where we use the additive notation also for the group of characters.

Restricting V to the finite Heisenberg group which is a central extension
of G× g∗ by µn, we get a unitary representation, hence we identify V ∨ with
V̄ . This said, a basis of V ⊗ V̄ is given by the set {g ⊗ χ̄}.

Given a vector
∑

g,χ ag,χ(g ⊗ χ̄) the action by h ∈ G sends it to∑
g,χ

(χ, h)ag−h,χ(g ⊗ χ̄),

while the one by η ∈ G∗ sends it to∑
g,χ

(η, g)ag,χ−η(g ⊗ χ̄).

Hence one verifies right away that

Fk,ξ :=
∑
g,χ

(χ− ξ, g − k)(g ⊗ χ̄)

is an eigenvector with character (ξ, h)(η, k) for (h, η) ∈ (G×G∗).
�
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Remark 54. The explicit calculation reproduced above is based on the
fact that the Fourier transform does not commute with the action of the
Heisenberg group: the action of G on V corresponds to the action of G =
(G∗)∗ on W , while the action of G∗ on W corresponds to the multiplication
of functions f(g) ∈ V with the conjugate χ̄ of the character χ.

In the next subsection we shall give an explicit example where the Heisen-
berg group is used for a geometrical construction. Now let us return to the
general discussion of cohomology of G-linearized sheaves.

In the special case where the action is free there is an isomorphism between
the category of G-linearized sheaves F on X, and sheaves FG on the quotient
Y ; we have then

Theorem 55. (Grothendieck,
tohoku
[Groth57]) Let Y = X/G, where G actstohoku

freely on X, and let F be a G-linearized sheaf on X, let FG be the G-
invariant direct image on Y .

Then there is a spectral sequence converging to a suitable graded quotient
of Hp+q(Y,FG) and with E1 term equal to Hp(G,Hq(X,F)); we write then
as a shorthand notation:

Hp(G,Hq(X,F))⇒ Hp+q(Y,FG).

The underlying idea is simple, once one knows (see
cartaneil
[CE56],

h-s
[H-S71]) that

there is a spectral sequence for the derived functors of a composition of
two functors: in fact one takes here the functor F 7→ H0(X,F)G, which is
manifestly the composition of two functors F 7→ H0(X,F) and A 7→ AG, but
also the composition of two other functors, since H0(X,F)G = H0(Y,FG).

The main trouble is that the functor F 7→ FG is no longer exact if we
drop the hypothesis that the action is free.

A particular case is of course the one where F is the constant sheaf Z: in
the case where the action is not free one has in the calculation to keep track
of stabilizers Gx of points x ∈ X, or, even better, to keep track of fixed loci
of subgroups H ⊂ G.

Since this bookkeeping is in some situations too difficult or sometimes also
of not so much use, Borel (

borelSTG
[Bore60]) proposed (in a way which is similar

in spirit to the one of Grothendieck) to consider a generalization of the
cohomology of the quotient (see

fultonLectures
[Ful07] for a nice account of the theory and

its applications in algebraic geometry).

Definition 56. Let G be a Lie group acting on a space X, and let BG =
EG/G be a classifying space for G. Here we do not need to specify whether
G acts on the left or on the right, since for each left action (g, x) 7→ gx there
is the mirror action xg := g−1x.

Letting R be an arbitrary ring of coefficients, the equivariant cohomol-
ogy of X with respect to the action of G is defined in one of the following
equivalent ways.

1) Assume that G acts on both spaces X and EG from the left: then we
have the diagonal action g(e, x) := (ge, gx) and

H i
G(X,R) := H i((EG×X)/G,R).
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2) (as in
fultonLectures
[Ful07]) Assume without loss of generality that G acts on X

from the left, and on EG from the right: then

H i
G(X,R) := H i(EG×G X,R),

where the space EG ×G X is defined to be the quotient of the Cartesian
product EG×X by the relation

(e · g, x) ∼ (e, g · x).

Remark 57. Observe that, in the special case where X is a point, and G
is discrete, we reobtain the cohomology group H i(G,R).

Example 58. The consideration of arbitrary Lie groups is rather natural,
for instance if G = C∗, then BG = P∞C = (C∞ \ {0})/C∗.

Similarly the infinite Grassmannian Gr(n,C∞) is a classifying space for
GL(n,C), it is a quotient (cf.

milnorCC
[M-S]) of the Stiefel manifold of frames

St(n,C∞) := {(v1, . . . , vn)|vi ∈ C∞, rank〈〈v1, . . . , vn〉〉 = n}.
Clearly the universal vector subbundle on the Grassmannian is obtained

as the invariant direct image of a GL(n,C)- linearised vector bundle on the
Stiefel manifold.

The names change a little bit: instead of a linearized vector bundle one
talks here of G-equivariant vector bundles, and there is a theory of equivari-
ant characteristic classes, i.e., these classes are equivariant for morphisms of
G-spaces (spaces with a G-action).

Rather than dwelling more on abstract definitions and general properties,
I prefer at this stage to mention the most important issues of G-linearized
bundles for geometric rational K(π, 1)’s.

5.10. Hodge Bundles of weight = 1. 1) Hodge Bundle for families
of Abelian varieties.

Consider the family of Abelian Varieties of dimension g, and with a po-
larization of type D′ ∼ (d1, d2, . . . , dg) over Siegel’s upper half space

Hg := {τ ∈ Mat(g, g,C)|τ =t τ, Im(τ) > 0}.
The family is given by the quotient of the trivial bundle H := Hg × Cg

by the action of λ ∈ Z2g acting by

(τ, z) 7→ (τ, z + (D′,−τ)λ).
The local system corresponding to the first cohomology groups of the

fibres is the Sp(D,Z)-linearized local system (bundle with fibre Z2g) on
HZ := Hg × Z2g, with the obvious action of Sp(D,Z)

M ∈ Sp(D,Z), M(τ, λ) = (M(τ),Mλ),

M :=
(
α β
γ δ

)
, M(τ) = −D′(D′α− τγ)−1(D′β − τδ).

Obviously HZ ⊗Z C splits as H1,0 ⊕H0,1 and the above vector bundle H
equals H1,0 and is called the Hodge bundle.

Stacks are nowadays the language in order to be able to treat the above
local system and the Hodge bundle as living over the quotient moduli space
Ag,D′ := Hg/ Sp(D,Z).
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2) Hodge Bundle for families of curves.
Over Teichmüller space we have a universal family of curves, which we

shall denote by pg : Cg → Tg.
The reason is the following: letting M be here a compact oriented Rie-

mann surface of genus g, and C(M) the space of complex structures on M ,
it is clear that there is a universal tautological family of complex structures
parametrized by C(M), and with total space

UC(M) := M × C(M),

on which the group Diff+(M) naturally acts, in particular Diff0(M).
A rather simple consequence of the Lefschetz’ lemma is that Diff0(M)

acts freely on C(M): in fact Lefschetz implies that for each complex structure
C on M the group of biholomorphisms Aut(C) contains no automorphism
(other than the identity) which is homotopic to the identity, hence a fortiori
no one which is differentiably isotopic to the identity .

We have the local system HZ := R1(pg)∗(Z), and again

HZ ⊗Z C = H1,0 ⊕H0,1, H1,0 := (pg)∗(Ω1
Cg |Tg

).

H := H1,0 is called the Hodge bundle, and it is indeed the pull back of the
Hodge bundle on Ag by the Torelli map, or period map, which associates to a
complex structure C the Jacobian variety Jac(C) := (H1,0(C))∨/H1(M,Z).

The i-th Chern class of the Hodge bundle yield some cohomology classes
which Mumford (

EnsMath
[Mum77a] and

mumshaf
[Mum83]) denoted as the λi-class (while the

notation λ-class is reserved for λ1).
Other classes, which play a crucial role in Mumford’s conjecture (

mumshaf
[Mum83],

see also
m-w
220), are the classes Ki, defined as

Ki := (pg)∗(Ki+1), K := c1(Ω1
Cg |Tg

).

5.11. A surface in a Bagnera-De Franchis threefold. We want to de-
scribe here a construction given in joint work with Ingrid Bauer and Davide
Frapporti (

bcf
[BCF14]) of a surface S with ample canonical divisor KS , and

with K2
S = 6, pg := h0(OS(KS)) = 1, q := h0(Ω1

S) = 1.
Let A1 be an elliptic curve, and let A2 be an Abelian surface with a line

bundle L2 yielding a polarization of type (1, 2) (i.e., the elementary divisors
for the Chern class of L2 are d1 = 1, d2 = 2). Take as L1 the line bundle
OA1(2O), and let L be the line bundle on A′ := A1 × A2 obtained as the
exterior tensor product of L1 and L2, so that

H0(A′, L) = H0(A1, L1)⊗H0(A2, L2).

Moreover, we choose the origin inA2 so that the space of sectionsH0(A2, L2)
consists only of even sections (hence, we shall no longer be free to further
change the origin by an arbitrary translation).

We want to take a Bagnera-De Franchis threefold X := A/G, where
A = (A1 × A2)/T , and G ∼= T ∼= Z/2, and have a surface S ⊂ X which is
the quotient of a G× T invariant D ∈ |L|, so that S2 = 1

4D
2 = 6.

We write as usual A1 = C/Z ⊕ Zτ , and we let A2 = C2/Λ2, with
λ1, λ2, λ3, λ4 a basis of Λ2 on which the Chern class of L2 is in Frobenius
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normal form. We let then

BCFFBCFF (59) g(a1 + a2) := a1 + τ/2− a2 + λ2/2, T := (Z/2)(1/2 + λ4/2).

Now, G×T surjects onto the group of two torsion points A1[2] of the ellip-
tic curve, and also on the subgroup (Z/2)(λ2/2)⊕ (Z/2)(λ4/2) ⊂ A1[2], and
both H0(A1, L1) and H0(A2, L2) are the Stone-von Neumann representation
of the Heisenberg group which is a central Z/2 extension of G× T .

By proposition
Heisenberg
53, since in this case V ∼= V̄ ( the only roots of unity

occurring are just ±1), we conclude that there are exactly 4 divisors in |L|,
invariant by a1 + a2 7→ a1− a2, and by a1 + a2 7→ a1 + τ/2 + a2 + λ2/2, and
a1 + a2 7→ a1 + 1/2 + a2 + λ4/2.

Hence these four divisors descend to give four surfaces S ⊂ X.
This construction is used in

bcf
[BCF14] to prove the following.

BCF Theorem 60. Let S be a surface of general type with invariants K2
S = 6,

pg = q = 1 such that there exists an unramified double cover Ŝ → S with
q(Ŝ) = 3, and such that the Albanese morphism α̂ : Ŝ → A is birational
onto it image Z, a divisor in A with Z3 = 12.

Then the canonical model of Ŝ is isomorphic to Z, and the canonical
model of S is isomorphic to Y = Z/(Z/2), which a divisor in a Bagnera-De
Franchis threefold X := A/G, where A = (A1 × A2)/T , G ∼= T ∼= Z/2, and
where the action is as in

BCFF
59.

These surfaces exist, have an irreducible four dimensional moduli space,
and their Albanese map α : S → A1 = A1/A1[2] has general fibre a non
hyperelliptic curve of genus g = 3.

Proof. By assumption the Albanese map α̂ : Ŝ → A is birational onto Z,
and we have K2

Ŝ
= 12 = K2

Z , since OZ(Z) is the dualizing sheaf of Z.
We argue similarly to

bc-inoue
[B-C12], Step 4 of theorem 0.5, page 31. Denote by

W the canonical model of Ŝ, and observe that by adjunction (see loc. cit.)
we have KW = α̂∗(KZ)− A, where A is an effective Q-Cartier divisor.

We observe now that XZ and KW are ample, hence we have an inequality,

12 = K2
W = (α̂∗(KZ)− A)2 = K2

Z − (α̂∗(KZ) · A)− (KW · A) ≥ K2
Z = 12,

and since both terms are equal to 12, we conclude that A = 0, which means
that KZ pulls back to KW hence W is isomorphic to Z. We have a covering
involution ι : Ŝ → Ŝ, such that S = Ŝ/ι. Since the action of Z/2 is free on
Ŝ, Z/2 also acts freely on Z.

Since Z3 = 12, Z is a divisor of type (1, 1, 2) in A. The covering involution
ι : Ŝ → Ŝ can be lifted to an involution g of A, which we write as an affine
transformation g(a) = αa+ β.

We have Abelian subvarieties A1 = ker(α − Id), A1 = ker(α + Id), and
since the irregularity of S equals 1, A1 has dimension 1, and A2 has dimen-
sion 2.

We observe preliminarly that g is fixed point free: since otherwise the fixed
point locus would be non empty of dimension one, so it would intersect the
ample divisor Z, contradicting that ι : Z → Z acts freely.

Therefore Y = Z/ι is a divisor in the Bagnera- De Franchis threefold
X = A/G, where G is the group of order two generated by g.
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We can then write the Abelian threefold A as A′/T , and since β1 /∈ T1 we
have only two possible cases.

Case 0) : T = 0.
Case 1) : T ∼= Z/2.
We further observe that since the divisor Z is g-invariant, its polarization

is α invariant, in particular its Chern class c ∈ ∧2(Hom(Λ,Z)), where A =
V/Λ.

Since T = Λ/(Λ1 ⊕ Λ2), c pulls back to

c′ ∈ ∧2(Hom(Λ1 ⊕ Λ2,Z)) = ∧2(Λ∨1 )⊕ ∧2(Λ∨2 )⊕ (Λ∨1 )⊗ (Λ∨2 ),

and by invariance c′ = (c′1 ⊕ c′2) ∈ ∧2(Λ∨1 )⊕ ∧2(Λ∨2 ).
So Case 0) bifurcates in the cases:
Case 0-I) c′1 is of type (1), c′2 is of type (1, 2).
Case 0-II) c′1 is of type (2), c′2 is of type (1, 1).
Both cases can be discarded, since they lead to the same contradiction.

Set D := Z: then D is the divisor of zeros on A = A1 ×A2 of a section of a
line bundle L which is an exterior tensor product of L1 and L2. Since

H0(A,L) = H0(A1, L1)⊗H0(A2, L2),

and H0(A1, L1) has dimension one in case 0-I), while H0(A2, L2) has di-
mension one in case 0-II), we conclude that D is a reducible divisor, a
contradiction, since D is smooth and connected.

In case 1), we denote A′ := A1×A2, and we let D be the inverse image of
Z inside A′. Again D is smooth and connected, since π1(Ŝ) surjects onto Λ.
Now D2 = 24, so the Pfaffian of c′ equals 4, and there are a priori several
possibilities.

Case 1-I) c′1 is of type (1).
Case 1-II) c′2 is of type (1, 1).
Case 1-III) c′1 is of type (2), c′2 is of type (1, 2).
Cases 1-I) and 1-II) can be excluded as case 0), since then D would be

reducible.
We are then left only with case 1-III), and we may, without loss of gen-

erality, assume that H0(A1, L1) = H0(A1,OA1(2O)), and assume that we
have chosen the origin so that all the sections of H0(A2, L2) are even.

We have A = A′/T , and we may write the generator of T as t1 ⊕ t2, and
write g(a1 + a2) = (a1 + β1) + (a2 − β2).

By the description of Bagnera-De Franchis varieties we have that t1 and
β1 are a basis of the group of 2 torsion points of the elliptic curve A1.

Now our divisor D, since all sections of L2 are even, is G× T invariant if
and only if is invariant by T and by translation by β.

This condition however implies that translation by β2 of L2 is isomorphic
to L2, and similarly for t2. It follows that β2, t2 are basis of the kernel K2

of the map φL2 : A2 → Pic0(A2), associating to y the tensor product of the
translation of L2 by y with the inverse of L1.

The isomorphism of G × T with both K1 := A1[2] and K2 allows to
identify both H0(A1, L1) and H0(A2, L2) with the Stone von Neumann rep-
resentation L2(T ): observe in fact that there is only one alternating function
(G× T )→ Z/2, independent of the chosen basis.

Therefore, there are exactly 4 invariant divisors in the linear system |L|.
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Explicitly, if H0(A1, L1) has basis x0, x1 and H0(A2, L2) has basis y0, y1,
then the invariant divisors correspond to the four eigenvectors

x0y0 + x1y1, x0y0 − x1y1, x0y1 + x1y0, x0y1 − x1y0.

To prove irreducibility of the above family of surfaces, it suffices to show
that all the four invariant divisors occur in the same connected family.

To this purpose, we just observe that the monodromy of the family of
elliptic curves Eτ := C/(Z⊕Zτ) on the upperhalf plane has the effect that a
transformation in SL(2,Z) acts on the subgroup Eτ [2] of points of 2-torsion
by its image matrix in GL(2,Z/Z/2), and in turn the effect on the Stone
von Neumann representation is the one of twisting it by a character of Eτ [2].

This concludes the proof that the moduli space is irreducible of dimension
4, since we the moduli space of elliptic curves, respectively the moduli space
of Abelian surfaces with a polarization of type (1, 2), are irreducible, of
respective dimensions 1, 3. The final assertion is a consequence of the fact
that Alb(S) = A1/(T1 + 〈〈β1〉〉), so that the fibres of the Albanese map are
just divisors in A2 of type (1, 2). Their self intersection equals 4 = 2(g− 1),
hence g = 3.

In order to establish that the general curve is non hyperelliptic, it suffices
to prove the following lemma.

Lemma 61. Let A2 be an Abelian surface, endowed with a divisor L of
type (1, 2), so that there is an isogeny of degree two f : A2 → A′ onto a
principally polarised Abelian surface, and L = f∗(Θ). Then the only curves
C ∈ |L| which are hyperelliptic are contained in the pull backs of a translate
of Θ by a point of order 2 for a suitable such isogeny f : A2 → A′. In
particular, the general curve C ∈ |L| is not hyperelliptic.

Proof. Let C ∈ |L|, and consider D := f∗(C) ∈ |2Θ|. There are two cases.
Case I): C + t = C. Then D = 2B, where B has genus 2, so that

C = f∗(B), hence, since 2B ≡ 2Θ, B is a translate of Θ by a point of order
2. There are exactly two such curves, and for them C → B is étale.

Case II): C + t 6= C. Then C → D is birational, f∗(D) = C ∪ (C + t).
Now, C + t is also linearly equivalent to L, hence C ∩ (C + t) meet in the 4
base points of the pencil |L||. Hence D has two double points and geometric
genus equal to 3. These double points are the intersection points of Θ and
a translate by a point of order 2, and are points of 2-torsion.

The sections of H0(OA′(2Θ) are all even and |2Θ| is the pull-back of
the space of hyperplane sections of the Kummer surface K ⊂ P3, quotient
K = A′/{±1}.

Therefore the image E′ of each such curve D lies in the pencil of planes
through 2 nodes of K.
E′ is a plane quartic, hence E′ has geometric genus 1, and we conclude

that C admits an involution σ with quotient an elliptic curve E (normaliza-
tion of E′), and the double cover is branched in 4 points.

Assume that C is hyperelliptic, and denote by h the hyperelliptic involu-
tion, which lies in the centre of Aut(C). Hence we have (Z/2)2 acting on
C, with quotient P1. We easily see that there are exactly six branch points,
two being the branch points of C/h → P1, four being the branch points of
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E → P1. It follows that there is an étale quotient C → B , where B is the
genus 2 curve, double cover of P1 branched on the six points.

Now, the inclusion C ⊂ A2 and the degree 2 map C → B induces a degree
two isogeny A2 → J(B), and C is the pull back of the Theta divisor of J(B),
thus it cannot be a general curve.

QED for the lemma.
�

Definition 62. Let us call a surface S as in theorem
BCF
60 a Sicilian surface

with q = pg = 1.
Observe that the fundamental group of S is isomorphic to the fundamental

group Γ of X, and that Γ, fitting into the exact sequence

1→ Λ→ Γ→ G = Z/2→ 1,

is generated by the union of the set {g, t}, where

g(v1 + v2) = v1 + τ/2− v2 + λ2/2

t(v1 + v2) = v1 + 1/2 + v2 + λ4/2
with the set of translations by the elements of a basis λ1, λ2, λ3, λ4 of Λ2.

It is therefore a semidirect product of Z5 = Λ2⊕Zt with the infinite cyclic
group generated by g: conjugation by g acts as −1 on Λ2, and it sends
t 7→ t− λ4 (hence 2t− λ4 is an eigenvector for the eigenvalue 1).

We shall now give a topological characterization of Sicilian surfaces with
q = pg = 1, following the lines of

inoue
[In94].

Observe in this respect that X is a K(Γ, 1) space, so that its cohomology
and homology are just group cohomology, respectively homology, of the
group Γ.

Corollary 63. A Sicilian surface S with q = pg = 1 is characterized by the
following properties:

(1) K2
S = 6

(2) χ(S) = 1
(3) π1(S) ∼= Γ, where Γ is as above,
(4) the classifying map f : S → X, where X is the Bagnera-De Franchis

threefold which is a classifying space for Γ, has the property that
f∗[S] := B satisfies Y 3 = 6.

In particular, any surface homotopically equivalent to a Sicilian surface
is a Sicilian surface, and we get a connected component of the moduli space
of surfaces of general type which is stable under the action of the absolute
Galois group.

Proof. Since π1(S) ∼= Γ, first of all q(S) = 1, hence also pg(S) = 1. By
the same token there is a double étale cover Ŝ → S such that q(Ŝ) = 3, and
the Albanese image of Ŝ, counted with multiplicity, is the inverse image of
B, therefore Z3 = 12. From this, it follows that Ŝ → Z is birational, since
the class of Z is indivisible.

We may now apply the previous theorem in order to obtain the classifi-
cation.

Observe finally that the condition (α̂∗Ŝ)3 = 12 is not only a topological
condition, it is also invariant under Galois autorphisms.
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�

6. Regularity of classifying maps and fundamental groups of
projective varieties

6.1. Harmonic maps. Given a continuous map f : M → N of differen-
tiable manifolds, we can approximate it, as already partly explained, by a
differentiable one, homotopic to the previous one. Indeed, as we already
explained, we may assume that N ⊂ Rn,M ⊂ Rm and, by a partition of
unity argument, that M is an open set in Rh. Convolution approximates
then f by a differentiable function F1 with values in a tubular neighbourhood
T (N) of N , and then the implicit function theorem applied to the normal
bundle provides a differentiable retraction r : T (N)→ N . Then F := r ◦F1

is the required approximation, and the same retraction provides a homotopy
between f and F (the homotopy between f and F1 being obvious).

If however M,N are algebraic varieties, and algebraic topology tells us
about the existence of a continuous map f as above, we would wish for more
regularity, possibly holomorphicity of the homotopic map F .

Now, Wirtinger’s theorem (see
mumErgebnisse
[Mum76]) characterises complex subman-

ifolds as area minimizing ones, so the first idea is to try to deform a differ-
entiable mapping f until it minimizes some functional.

We may take the Riemannian structure inherited form the chosen embed-
ding, and assume that (M, gM ), (N, gN ) are Riemannian manifolds.

If we assume that M is compact, then one defines the Energy E(f) of
the map as the integral:

E(f) := 1/2
∫
M
|Df |2dµM ,

where Df is the derivative of the differentiable map f , dµM is the volume
element on M , and |Df | is just its norm as a differentiable section of a
bundle endowed with a metric:

Df ∈ H0(M, C∞(TM∨ ⊗ f∗(TN))).

Remark 64. (1) in more concrete terms, the integral in local coordinates
has the form

E(f) := 1/2
∫
M

Σα,β,i,j [(gN )α,β
∂fα
∂xi

∂fβ
∂xj

(gM )−1
i,j ]
√
det(gij).

(2) Linear algebra shows that, once we identify TM, TN with their dual
bundles via the Riemannian metrics, |Df |2 = Tr((Df)∨ ◦ Df), hence we
integrate over M the sum of the eigenvalues of the endomorphism (Df)∨ ◦
Df : TM → TM .

(3) the first variation of the energy function vanishes precisely when f is
a harmonic map, i.e., ∆(f) = 0, where ∆(f) := Tr(∇(Df)), ∇ being the
connection on TM∨ ⊗ f∗(TN) induced by the Levi-Civita connections on
M and N .

(4) the energy function enters also in the study of geodesics and Morse
theory (see

milnorMT
[Mil63])
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These notions were introduced by Eells and Sampson in the seminal paper
eells-sampson
[Eells-Sam64], which used the heat flow

∂ft
∂t

= ∆(f)

in order to find extremals for the energy functional. These curves in the
space of maps are (as explained in

eells-sampson
[Eells-Sam64]) the analogue of gradient

lines in Morse theory, and the energy functional decreases on these lines.
The obvious advantage of the flow method with respect to discrete con-

vergence procedures (‘direct methods of the calculus of variations’) is that
here it is clear that all the maps are homotopic to each other! 5

The next theorem is one of the most important results, first obtained in
eells-sampson
[Eells-Sam64]

Theorem 65. (Eells-Sampson) Let M,N be compact Riemannian man-harmonic
ifolds, and assume that the sectional curvature KN of N is semi-negative
(KN ≤ 0): then every continuous map f0 : M → N is homotopic to a har-
monic map f : M → N . Moreover the equation ∆(f) = 0 implies, in case
where M,N are real analytic manifolds, the real analyticity of f .

Remark 66. Observe that, in the case where N has strictly negative sec-
tional curvature, Hartmann (

hartmann
[Hartm67]) proved the unicity of the harmonic

map in each homotopy class.

Not only the condition about the curvature is necessary for the existence
of a harmonic representative in each homotopy class, but moreover it consti-
tutes the main source of connections with the concept of classifying spaces,
in view of the classical (see

milnorMT
[Mil63],

cartanEspacesRiemann
[Car28]) theorem of Cartan-Hadamard

establishing a deep connection between curvature and topology.

Theorem 67. (Cartan-Hadamard) Suppose that N is a complete Rie-
mannian manifold, with semi-negative (KN ≤ 0) sectional curvature: then
the universal covering Ñ is diffeomorphic to Euclidean space, more precisely
given any two points there is a unique geodesic joining them.

Remark 68. The reader will notice that the hypotheses of theorem
harmonic
65 and

of Hartmann’s theorem apply naturally to two projective curves M,N of the
same genus g ≥ 2, taken with the metric of constant curvature −1 provided
by the uniformization theorem: then one may take for f0 a diffeomorphism,
and apply the result, obtaining a unique harmonic map f which Samson in
sampson
[Sam78] shows to be also a diffeomorphism. The result obtained is that to
the harmonic map f one associates a quadratic differential ηf ∈ H0(Ω⊗2

M ) =
H0(OM (2K)), and that ηf determines the isomorphism class of N . This
result constitutes another approach to Teichmüller space Tg.

Thus in complex dimension 1 one cannot hope for a stronger result,to have
a holomorphic map rather than just a harmonic one. The surprise comes
from the fact that, with suitable assumptions, the hope can be realised in
higher dimension, with a small proviso: given a complex manifold X, one

5The flow method made then its way further through the work of Hamilton (
hamilton
[Ham82]),

Perelman and others (
perelman1
[Per1],

perelman2
[Per2],

perelman3
[Per3]) , leading to the solution of the three dimen-

sional Poincaré conjecture (see for example
morgan-tian
[M-T] for an exposition).
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can define the conjugate manifold X̄ as the same differentiable manifold, but
where in the decomposition TX⊗R C = T (1,0)⊕T (0,1) the roles of T (1,0) and
T (0,1) are interchanged (this amounts, in case whereX is an algebraic variety,
to replacing the defining polynomial equations by polynomials obtained from
the previous ones by applying complex conjugation to the coefficients, i.e.,
replacing each P (x0, . . . , xN ) by P (x0, . . . , xN )).

In this case the identity map, viewed as a map ι : X → X̄ is no longer
holomorphic, but antiholomorphic. Assume now that we have a harmonic
map f : Y → X: then also ι ◦ f shall be harmonic, but a theorem implying
that f must be holomorphic then necessarily implies that there is a complex
isomorphism between X and X̄. Unfortunately, this is not the case, as one
sees, already in the case of elliptic curves; but then one may restrict the
hope to proving that f is either holomorphic or antiholomorphic.

A breakthrough in this direction was obtained by Siu (
siuannals
[Siu80]) who proved

several results, that we shall discuss in the next sections.

6.2. Kähler manifolds and some archetypal theorem. The assump-
tion that a complex manifold X is a Kähler manifold is that there exists a
Hermitian metric on the tangent bundle T (1,0) whose associated (1, 1) form
ξ is closed. In local coordinates the metric is given by

h = Σi,jgi,jdzidz̄j , with dξ = 0, ξ := (Σi,jgi,jdzi ∧ dz̄j).
Hodge theory shows that the cohomology of a compact Kähler manifold

X has a Hodge-Kähler decomposition, where Hp,q is the space of harmonic
forms of type (p, q), which are in particular d-closed (and d∗-closed):

Hm(X,C) = ⊕p,q≥0,p+q=mH
p,q, Hq,p = Hp,q, Hp,q ∼= Hq(X,Ωp

X).

We give just an elementary application of the above theorem, a charac-
terization of complex tori (see

catAV
[Cat95],

cat04
[Cat04],

cop
[COP10] for other charac-

terizations)

tori Theorem 69. Let X be a cKM, i.e., a compact Kähler manifold X, of
dimension n. Then X is a complex torus if and only if it has the same in-
tegral cohomology algebra of a complex torus, i.e. H∗(X,Z) ∼= ∧∗H1(X,Z).
Equivalently, if and only if H∗(X,C) ∼= ∧∗H1(X,C) and H2n(X,Z) ∼=
∧2nH1(X,Z)

Proof. Since H2n(X,Z) ∼= Z, it follows that H1(X,Z) is free of rank
equal to 2n, therefore dimC(H1,0) = n. We consider then, chosen a base
point x0 ∈ X, the Albanese map

aX : X → Alb(X) := H0(Ω1
X)∨/Hom(H1(X,Z),Z), x 7→

∫ x

x0

.

Therefore we have a map between X and the complex torus T := Alb(X),
which induces an isomorphism of first cohomology groups, and has degree
1, in view of the isomorphism

H2n(X,Z) ∼= Λ2n(H1(X,Z)) ∼= H2n(T,Z).

In view of the normality of X, it suffices to show that aX is finite. Let
Y be a subvariety of X of dimension m > 0 mapping to a point: then the
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cohomology (or homology class, in view of Poincaré duality) class of Y is
trivial, since the cohomology algebra of X and T are isomorphic. But since
X is Kähler, if ξ is the Kähler form,

∫
Y ξ

m > 0, a contradiction, since this
integral depends only (by the closeness of ξ) on the homology class of Y .

�
One can conjecture that a stronger theorem holds, namely

Q-tori Conjecture 70. Let X be a cKM, i.e., a compact Kähler manifold X, of
dimension n. Then X is a complex torus if and only if it has the same ra-
tional cohomology algebra of a complex torus, i.e. H∗(X,Q) ∼= ∧∗H1(X,Q).
Equivalently, if and only if H∗(X,C) ∼= ∧∗H1(X,C).

Remark 71. Observe thatH∗(X,Q) ∼= ∧∗H1(X,Q)⇔ H∗(X,C) ∼= ∧∗H1(X,C)
by virtue of the universal coefficients theorem.

The same argument of the previous theorem
tori
69 yields that, sinceH2n(X,Z) ∼=

Z, dimC(H1,0) = n and the Albanese map

aX : X → A := Alb(X) := H0(Ω1
X)∨/Hom(H1(X,Z),Z), x 7→

∫ x

x0

is finite, and it suffices to show that it is unramified (étale), since we have
an isomorphism H1(X,Z) ∼= H1(A,Z).

One sets therefore R to be the ramification divisor of α, and B = α∗(R)
the branch divisor.

There are two cases:
Case i) B is an ample divisor, and A and X are projective.
Case ii) : B is non ample, thus, by a result of Ueno (

keno
[Ueno75]) there is a

subtorus A0 ⊂ A such that B is the pull-back of an ample divisor on A/A0.
Case ii) can be reduced, via Ueno’s fibration to case i), which is the crucial

one.
Since we have an isomorphism of rational cohomology groups, and Poincaré

duality holds, we get that α∗ and α∗ are, in each degree, isomorphisms with
rational coefficients.

The first question is to show that the canonical divisor, which is just the
ramification divisor R, is an ample divisor.

Then to observe that the vanishing of the topological Euler Poincaré char-
acteristic e(X) and of the Euler Poincaré characteristics χ(Ωi

X) = 0 for all i
implies (using Riemann Roch?) that the first Chern class of X is zero, thus
obtaining a contradiction to the ampleness of KX .

This step works at least in dimension n = 2, since then we have the
Noether formula e(x) +K2

X = 12χ(OX), hence we obtain K2
X = 0.

Remark 72. of course the hypothesis that X is Kähler is crucial: there
are several examples, due to Blanchard, Calabi, and Sommese, of complex
manifolds which are diffeomorphic to a complex torus but are not complex
tori: indeed KX is not linearly equivalent to a trivial divisor (see

nankai
[Cat02A]

for references to the cited papers , and
cop
[COP10] for partial results on the

question whether a compact complex manifold with trivial canonical divisor,
which is diffeomorphic to a torus, is indeed biholomorphic to a complex
torus).
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The previous theorem
tori
69 allows a simple generalization which illustrates

well the use of topological methods in moduli theory.

Theorem 73. Let X = A/G be a Generalized Hyperelliptic manifold of
complex dimension n and assume that Y is a compact Kähler Manifold sat-
isfying the following properties:

(1) π1(Y ) ∼= π1(X) ∼= Γ
(2) H2n(Y,Z) ∼= H2n(Γ,Z) through the natural homomorphism
(3) H2n(Y,C) ∼= H2n(Γ,C) through the natural homomorphism.

Then also Y is a Generalized Hyperelliptic manifold Y = A′/G, is affinely
equivalent to X, and is a complex deformation of X if and only if X and Y
have the same Hodge type.

Proof. Since Γ = π1(X), we have an exact sequence 1→ Λ→ Γ→ G→ 0
which, by proposition

affinetype
16, determines the real affine type of the action of Γ.

Now, let W be the unramified covering of Y corresponding to the surjec-
tion π1(Y ) ∼= Γ→ G.

Then the Albanese variety A′ of W has dimension n, and the group G
acts on A′. The Albanese map W → A′ induces a holomorphic map f : Y →
A′/G. Now, π1(A′/G) ∼= Γ and by hypothesis f induces an isomorphism of
cohomology groups and has degree equal to 1. The same argument as in
theorem

tori
69 shows that f is an isomorphism. Hence Y = A′/G has the same

real affine type of X, in particular G acts also freely on A′: therefore Y is
also a Generalized Hyperelliptic manifold of complex dimension n.

The last assertion is a direct consequence of remark
Hodgetype
18.

�

6.3. Siu’s results on harmonic maps. The result by Siu which is the
simplest to state is the following

siu Theorem 74. (I) Assume that f : M → N is a harmonic map between two
compact Kähler manifolds and that the curvature tensor of N is strongly
negative. Assume further that the real rank of the derivative Df is at least
4 in some point of M . Then f is either holomorphic or antiholomorphic.

(II) In particular, if dimC(N) ≥ 2 and M is homotopy equivalent to N ,
then M is either biholomorphic or antibiholomorphic to N .

From theorem
siu
74 follows an important consequence.

Siu-cor Corollary 75. Assume that f : M → N is a continuous map between two
compact Kähler manifolds and that the curvature tensor of N is strongly
negative. Assume further that there is a j ≥ 4 such that Hj(f,Z) 6= 0: then
f is homotopic to a map F which is either holomorphic or antiholomorphic.

Proof. f is homotopic to a harmonic map F . One needs to show that
at some point the real rank of the derivative DF is at least 4. If it were
not so, then by Sard’s lemma the image Y := F (M) would be a subanalytic
compact set of Hausdorff dimension at most 3.

Lemma 76. Let Y be a subanalytic compact set, or just a compact set of
Hausdorff dimension at most h. Then Hi(Y,Z) = 0 for i ≥ h+ 1.
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The lemma then implies Hi(Y,Z) = 0, ∀i ≥ 4, contradicting the existence
of an i ≥ 4 such that Hi(f,Z) 6= 0 .

First proof of the lemma: Y is a finite union of locally closed submanifolds
of dimension ≤ h, by the results of

b-m
[B-M88]. Using the exact sequence of

Borel-Moore homology (see
B-M
[B-M60]) relating the homology of Y = U ∪ F ,

where Y is the union of a closed set F and of an open subset U , and induction
on the number of such locally closed sets, we obtain that Hi(Y,Z) = 0 for
i ≥ h+ 1.

Second proof of the lemma: Y is a compact of Hausdorff dimension at
most h. By theorem VII 3 of

H-W
[H-W48], page 104, follows that the dimension

of Y is at most h. In turn, using theorem 2’ , page 362 of
alexandrov
[Al75], follows (take

A ibidem to be a point P ) that Hi(Y,Z) = Hi(Y, P,Z) = 0 for i ≥ h+ 1.
�
�

Remark 77. (1) The hypothesis that the rank of the differential should be
at least 4 at some point is needed for instance to avoid that the image of
F is a complex projective curve C contained inside a projective variety N
with such a strongly negative Kähler metric. Because in this case f could
be the composition of a holomorphic map g : M → C ′ to a curve C ′ of the
same genus as C, but not isomorphic to C, composed with a diffeomorphism
between C ′ and C.

(2) Part II of the theorem follows clearly from part I: because, as we
have seen, the homotopy equivalence between M and N is realised by a
harmonic map f : M → N . From part I of the theorem one knows that f is
holomorphic or antiholomorphic (in short, one says that f is dianalytic).
W.l.o.g. let us assume that f is holomorphic (replacing possibly N by N̄).
There remains only to prove that f is biholomorphic. The argument is
almost the same as the one used in the archetypal theorem

tori
69.

Step 1: f is a finite map; otherwise, since f is proper, there would be
a complex curve C such that f(C) is a point. But in a Kähler manifold
the homology class in dimension 2m of a subvariety of complex dimension
m, here C, is never trivial. On the other hand, since f is a homotopy
equivalence, and f(C) is a point, this class must be zero.

Step 2: f is a map of degree one since f induces an isomorphism between
the last non zero homology groups of M,N respectively. If n = dimCN,m =
dimCM , then these groups are H2m(M,Z), respectively H2n(N,Z); hence
n = m and

H2m(f) : H2m(M,Z) ∼= Z[M ]→ H2m(N,Z) ∼= Z[N ]

is an isomorphism.
Step 3: f is holomorphic, finite and of degree 1.Therefore there are open

subsets whose complements are Zariski closed such that f : U → V ⊂ N is
an isomorphism. Then the inverse of f is defined on V , the complement of a
complex analytic set, and by the Riemann extension theorem (normality of
smooth varieties) the inverse extends to N , showing that f is biholomorphic.

(3) We have sketched the above argument since it appears over and over in
the application of homotopy equivalence to proving isomorphism of complex
projective (or just Kähler) manifolds. Instead, the proof of part I is based
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on the Bochner-Nakano formula, which was later further generalised by Siu
in

siuJDG
[Siu82]), and is too technical to be fully discussed here.

Let us try however to describe precisely the main hypothesis of strong
negativity of the curvature, which is a stronger condition than the strict
negativity of the sectional curvature.

The assumption that N is a Kähler manifold is that there exists a Her-
mitian metric on the tangent bundle T (1,0) whose associated (1, 1) form is
closed. In local coordinates the metric is given by

Σi,jgi,jdzidz̄j , with d(Σi,jgi,jdzi ∧ dz̄j) = 0.

The curvature tensor is a (1, 1) form with values in (T (1,0))∨ ⊗ T (1,0), and
using the Hermitian metric to identify (T (1,0))∨ ∼= T (1,0) = T (0,1), and their
conjugates ((T (0,1))∨ = (T (1,0))∨ ∼= T (1,0) ) we write as usual the curvature
tensor as a section R of

(T (1,0))∨ ⊗ (T (0,1))∨ ⊗ (T (1,0))∨ ⊗ (T (0,1))∨.

Then seminegativity of the sectional curvature is equivalent to

−R(ξ ∧ η̄ − η ∧ ξ̄, ξ ∧ η̄ − η ∧ ξ̄) ≤ 0,

for all pairs of complex tangent vectors ξ, η (here one uses the isomorphism
T (1,0) ∼= TN , and one sees that the expression depends only on the real span
of the two vectors ξ, η).

Strong negativity means instead that

−R(ξ ∧ η̄ − ζ ∧ θ̄, ξ ∧ η̄ − ζ ∧ θ̄) < 0,

for all 4-tuples of complex tangent vectors ξ, η, ζ, θ.
The geometrical meaning is the following (see

5book
[ABCKT96], page 71): the

sectional curvature is a quadratic form on ∧2(TN), and as such it extends
to the complexified bundle ∧2(TN)⊗ C as a Hermitian form. Then strong
negativity in the sense of Siu is also called negativity of the Hermitian
sectional curvature R(v, w, v̄, w̄) for all vectors v, w ∈ (TN)⊗ C.

Then a reformulation of the result of Siu (
siuannals
[Siu80]) and Sampson (

sampsonK
[Sam86])

is the following:

Theorem 78. Let M be a compact Kähler manifold, and N a Riemann-
ian manifold with semi-negative Hermitian sectional curvature. Then every
harmonic map f : M → N is pluri-harmonic.

Now, examples of varieties N with a strongly negative curvature are the
balls in Cn, i.e., the BSD of type In,1; Siu finds out that (

siuannals
[Siu80], see also

Cal-Ves
[C-V60]) for the irreducible bounded symmetric domains of type

Ip.q, for pq ≥ 2, IIn,∀n ≥ 3, IIIn, ∀n ≥ 2, IVn, ∀n ≥ 3,

the metric is not strongly negative, but just very strongly seminegative,
where very strong negativity simply means negativity of the curvature as a
Hermitian form on T 1,0 ⊗ T 0,1 = T 1,0 ⊗ T 0,1.

Indeed, the bulk of the calculations is to see that there is an upper bound
for the nullity of the Hermitian sectional curvature, i.e. for the rank of the
real subbundles of TM where the Hermitian sectional curvature restricts
identically to zero (in Siu’s notation, then one considers always the case
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where very strongly seminegativity holds, and 2-negative means strongly
negative, adequately negative means that the nullity cannot be maximal.).

Hence Siu derives several results,

Theorem 79. (Siu) Suppose that M,N are compact Kähler manifolds and
the curvature tensor of N is negative of order k. Assume that f : M → N
is a harmonic map such that, ∃i ≥ 2k such that Hi(f,Z) 6= 0. Then f is
either holomorphic or antiholomorphic.

Theorem 80. (Siu) Suppose that M is a compact Kähler manifold and
N is a locally symmetric manifold D/Γ, where D is an irreducible bounded
symmetric domain of one of the following types:

Ip.q, for pq ≥ 2, IIn,∀n ≥ 3, IIIn,∀n ≥ 2, IVn,∀n ≥ 3.

Assume that f : M → N is a harmonic map such that, n := dimCN ,
H2n(f,Z) 6= 0. Then f is either holomorphic or antiholomorphic.

In particular, if M is a compact Kähler manifold homotopically equivalent
to N as above, then either M ∼= N or M ∼= N̄ .

The most general result is (
5book
[ABCKT96], page 80, theorems 6.13-15):

Theorem 81. (Siu) Suppose that M is a compact Kähler manifold and Ncite
is a locally Hermitian symmetric space D/Γ = G/K, where the irreducible
decomposition of D contains no dimension 1 factors.

(1) Assume that f : M → N is a harmonic map such that, n := dimCN ,
H2n(f,Z) 6= 0. Then f is holomorphic for some invariant complex structure
on G/K.

(2) Assume that M is homotopically equivalent to N : then f is biholo-
morphic to G/K for some invariant complex structure on G/K.

Remark 82. A few words are needed to explain the formulation ‘for some
invariant complex structure on G/K’. In the case where D is irreducible, we
can just take the conjugate complex structure. But if D = D1×· · ·×Dl, one
can just take the conjugate complex structure on a subset I of the indices
j ∈ {1, . . . , l}.
6.4. Hodge theory and existence of maps to curves. Siu also used
harmonic theory in order to construct holomorphic maps from Kähler man-
ifolds to projective curves. This the theorem of

siucurves
[Siu87]

siucurves Theorem 83. (Siu) Assume that a compact Kähler manifold X is such
that there is a surjection φ : π1(X) → πg, where g ≥ 2 and , as usual, πg
is the fundamental groups of a projective curve of genus g. Then there is
a projective curve C of genus g′ ≥ g and a fibration f : X → C (i.e., the
fibres of f are connected) such that φ factors through π1(f).

In this case the homomorphism leads to a harmonic map to a curve, and
one has to show that the Stein factorisation yields a map to some Riemann
surface which is holomorphic for some complex structure on the target.

In this case it can be seen more directly how the Kähler assumption,
which boils down to Kähler identities, is used.

Recall that Hodge theory shows that the cohomology of a compact Kähler
manifold X has a Hodge-Kähler decomposition, where Hp,q is the space of
harmonic forms of type (p, q):
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Hm(X,C) = ⊕p,q≥0,p+q=mH
p,q, Hq,p = Hp,q, Hp,q ∼= Hq(X,Ωp

X).

The Hodge-Kähler decomposition theorem has a long story, and was
proven by Picard in special cases. It entails the following consequence:

Holomorphic forms are closed, i.e., η ∈ H0(X,Ωp
X)⇒ dη = 0.

At the turn of last century this fact was then used by Castelnuovo and
de Franchis (

CdF
[Cast05],

deFranchis
[dF05]):

Theorem 84. (Castelnuovo-de Franchis) Assume that X is a compact
Kähler manifold, η1, η2 ∈ H0(X,Ω1

X) are C-linearly independent, and the
wedge product η1 ∧ η2 is d-exact. Then η1 ∧ η2 ≡ 0 and there exists a
fibration f : X → C such that η1, η2 ∈ f∗H0(C,Ω1

C). In particular, C has
genus g ≥ 2.

Even if the proof is well known, let us point out that the first assertion
follows form the Hodge-Kähler decomposition, while η1 ∧ η2 ≡ 0 implies
the existence of a non constant rational function ϕ such that η2 = ϕη1.
This shows that the foliation defined by the two holomorphic forms has
Zariski closed leaves, and the rest follows then rather directly taking the
Stein factorization of the rational map ϕ : X → P1.

Now, the above result, which is holomorphic in nature, combined with the
Hodge decomposition, produces results which are topological in nature (they
actually only depend on the cohomology algebra structure of H∗(X,C).

To explain this in the most elementary case, we start from the following
simple observation. If two linear independent vectors in the first cohomology
group H1(X,C) of a Kähler manifold have wedge product which is trivial in
cohomology, and we represent them as η1 + ω1, η2 + ω2, for η1, η2, ω1, ω2 ∈
H0(X,Ω1

X), then by the Hodge decomposition and the first assertion of the
theorem of Castelnuovo-de Franchis

(η1 + ω1) ∧ (η2 + ω2) = 0 ∈ H2(X,C)

implies
η1 ∧ η2 ≡ 0, ω1 ∧ ω2 ≡ 0.

We can apply Castelnuovo-de Franchis unless η1, η2 are C-linearly depen-
dent, and similarly ω1, ω2. W.l.o.g. we may assume η2 ≡ 0 and ω1 ≡ 0. But
then η1∧ω2 = 0 implies that the Hodge norm

∫
X(η1∧ω2)∧η1 ∧ ω2∧ξn−2 = 0,

where ξ is here the Kähler form. A simple trick is to observe that

0 =
∫
X

(η1 ∧ ω2) ∧ η1 ∧ ω2 ∧ ξn−2 =
∫
X

(η1 ∧ ω2) ∧ η1 ∧ ω2 ∧ ξn−2,

therefore the same integral yields that the Hodge norm of η1 ∧ ω2 is zero,
hence η1 ∧ ω2 ≡ 0; the final conclusion is that we can in any case apply
Castelnuovo-de Franchis and find a map to a projective curve C of genus
g ≥ 2.

More precisely, we get the following theorem (
albanese
[Cat91]):

Theorem 85. (Isotropic subspace theorem) On a compact Kähler man-
ifold X there is a bijection between isomorphism classes of fibrations f :
X → C to a projective curve of genus g ≥ 2, and self conjugate subspaces
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V ⊂ H1(X,C) which have dimension 2g and are of the form V = U ⊕ Ū ,
where U is a maximal isotropic subspace for the wedge product

H1(X,C)×H1(X,C)→ H2(X,C).

It is interesting that the above result implies the following of Gromov
(
gromov
[?]), which in turn obviously implies theorem

siucurves
83 of Siu.

Theorem 86. (Gromov’s few relations theorem) Let X be a compact
Kähler manifold and assume that there exists a surjection of its fundamental
group

Γ := π1(X)→ G = 〈〈x1, . . . , xn|R1(x), . . . , Rm(x)〉〉,
onto a finitely presented which has ‘few relations’, more precisely where n ≥
m − 2. Then there exists a fibration f : X → C, onto a projective curve C
of genus g ≥ 1

2(n−m).
If moreover π1(X) ∼= G, then the first cohomology group H1(X,C) equals

f∗H1(C,C).

Proof: We saw in a previous section that if the fundamental group of
X, Γ := π1(X) admits a surjection onto G, then the induced classifying
continuous map φ : X → BG has the properties that its induced action on
first cohomology

H1(φ) : H1(BG,C)→ H1(X,C)
is injective and the image W of H1(φ) is such that each element w ∈ W is
contained in an isotropic subspace of rank ≥ n−m.

Hence follows immediately that there is an isotropic subspace of dimension
≥ n−m and a fibration onto a curve of genus g ≥ n−m.

For the second assertion, let U be a maximal isotropic subspace contained
in W = H1(X,C), and consider that then there exists a fibration f : X → C,
onto a projective curve C of genus g ≥ 2 such that f∗H1(C,C) = U ⊕ Ū .
We are done unless U ⊕ Ū 6= H1(X,C).

But in this case we know that W = H1(X,C) is the union of such proper
subspaces U ⊕ Ū .

These however are of the form f∗H1(C,Z)⊗C, hence they are a countable
number; by Baire’s theorem their union cannot be the whole C-vector space
W = H1(X,C).

�
Not only one sees clearly how the Kähler hypothesis is used, but indeed

Kato (
Kato
[Kato90]) and Pontecorvo

pontecorvo
[Pont96]) showed how the results are in-

deed false without the Kähler assumption, using twistor spaces of algebraic
surfaces which are P1-bundles over a projective curve C of genus g ≥ 2. A
simpler example was then found by Kotschick (

5book
[ABCKT96], ex. 2.16, page

28): a primary Kodaira surface (an elliptic bundle over an elliptic curve,
with b1(X) = 3, b2(X) = 4).

We do not mention in detail generalisations of the Castelnuovo-de Fran-
chis theory to higher dimensional targets (see

G-L1
[G-L87],

albanese
[Cat91],

G-L2
[G-L91],

simpsonTors
[Simp93]), since these shall not be used in the sequel.

We want however to mention another result (
cime
[Cat08]) which again, like

the isotropic subspace theorem, determines explicitly the genus of the target
curve (a result which is clearly useful for classification and moduli problems).
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orb-fibr Theorem 87. Let X be a compact Kähler manifold, and let f : X → C be
a fibration onto a projective curve C, of genus g, and assume that there are
exactly r fibres which are multiple with multiplicities m1, . . .mr ≥ 2. Then
f induces an orbifold fundamental group exact sequence

π1(F )→ π1(X)→ π1(g;m1, . . .mr)→ 0,

where F is a smooth fibre of f , and

π1(g;m1, . . .mr) = 〈〈α1, β1, . . . , αg, βg, γ1, . . . γr| Πg
1[αj , βj ]Πr

1γi〉〉.

Let X be a compact Kähler manifold and let (g,m1, . . .mr) be a hyperbolic
type, i.e., assume 2g − 2 + Σi(1− 1

mi
) > 0.

Then each epimorphism φ : π1(X) → π1(g;m1, . . .mr) with finitely gen-
erated kernel is obtained from a fibration f : X → C of type (g;m1, . . .mr).

6.5. Restrictions on fundamental groups of projective varieties. A
very interesting (and still largely unanswered) question posed by J.P. Serre
in

ser5
[Ser58] is:

Question 88. (Serre) 1) Which are the projective groups, i.e., the
groups π which occur as fundamental groups π = π1(X) of a complex pro-
jective manifold ?

2) Which are the Kähler groups, i.e., the groups π which occur as
fundamental groups π = π1(X) of a compact Kähler manifold ?

Remark 89. i) Serre himself proved (see
shaf
[Shaf74]) that the answer to the

first question is positive for every finite group. In this chapter we shall only
limit ourselves to mention some examples and results to give a general idea,
especially about the use of harmonic maps, referring the reader to the book
5book
[ABCKT96], entirely dedicated to this subject.

ii) For question 1), in view of the Lefschetz hyperplane section theorem
(
hyperplanesection
3), the class of projective groups π is exactly the class of groups which occur

as fundamental groups π = π1(X) of a complex projective smooth surface.
iii) if π and π′ are projective (reps. Kähler) , the same is true for the

Cartesian product (take X ×X ′).

The first obvious restriction for a group Γ to be a Kähler group (only a
priori the class of Kähler groups is a larger class than the one of projective
groups) is that their first Betti number b1 (rank of the abelianization Γab =
Γ/[Γ,Γ]) is even; since if Γ = π1(X), then Γab = H1(X,Z), and H1(X,Z)⊗C
has even dimension by the Hodge=Kähler decomposition.

A more general restriction is that the fundamental group Γ of a compact
differentiable manifold M must be finitely presented: since by Morse theory
(see

milnorMT
[Mil63]) M is homotopically equivalent to a finite CW-complex (M is

obtained attaching finitely many cells of dimension ≤ dimR(M)).
Conversely (see

ST
[S-T34], page 180),

ST Theorem 90. Any finitely presented group Γ is the fundamental group of
a compact oriented 4-manifold.

Recall for this the
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Definition 91. (Connected sum) Given two differentiable manifolds M1,M2

of the same dimension n, take respective points Pi ∈ Mi, i = 1, 2 and re-
spective open neighbourhoods Bi which are diffeomorphic to balls, and with
smooth boundary ∂Bi ∼= Sn−1. Glueing together the two manifolds with
boundary Mi \Bi, ∂Bi we obtain a manifold M1]M2, which is denoted by the
connected sum of M1,M2 and whose diffeomorphism class is independent of
the choices made in the construction. Also, if M1,M2 are oriented, the same
results for M1]M2, provided the diffeomorphisms ∂Bi ∼= Sn−1 are chosen to
be orientation preserving.

Definition 92. (Free product) If Γ,Γ′ are finitely presented groups,

Γ = 〈〈x1, . . . , xn|R1(x), . . . , Rm(x)〉〉,Γ′ = 〈〈y1, . . . , yh|R′1(y), . . . , R′k(y)〉〉,
their free product is the finitely presented group

Γ ∗ Γ′ = 〈〈x1, . . . , xn, y1, . . . , yh|R1(x), . . . , Rm(x), R′1(y), . . . , R′k(y)〉〉.

Idea for the proof of
ST
90: By the van Kampen theorem, the fundamental

group of the union X = X1∪X2 of two open sets with connected intersection
X1 ∩X2 is the quotient of the free product π1(X1) ∗π1(X2) by the relations
i1(γ) = i2(γ),∀γ ∈ π1(X1∩X2), where ij : π1(X1∩X2)→ π1(Xj) is induced
by the natural inclusion (X1 ∩X2) ⊂ Xj .

Now, assume that Γ has a finite presentation

Γ = 〈〈x1, . . . , xn|R1(x), . . . , Rm(x)〉〉.
Then one considers the connected sum of n copies of S1 × S3, which has
then fundamental group equal to a free group Fn = 〈〈x1, . . . , xn〉〉.

Realizing the relations Rj(x) as loops connecting the base point to m
disjoint embedded circles (i.e., diffeomorphic to S1), one can perform the so
called surgery replacing tubular neighbourhoods of these circles, which are
diffeomorphic to S1×B3, and have boundary S1×S2, each by the manifold
with boundary B2 × S2. These manifolds are simply connected, hence by
van Kampen we introduce the relation Rj(x) = 1, and finally one obtains a
M with fundamental group ∼= Γ.

�
There are no more restrictions, other than finite presentability, if one

requires that Γ be the fundamental group of a compact complex manifold,
as shown by Taubes (

Taubes
[Taub92]), or if one requires that Γ be the fundamental

group of a compact symplectic 4-manifold, as shown by Gompf (
Gompf
[Gompf95]).

Notice however that, by the main results of Kodaira’s surface classification
(see

bpv
[BPHV]), the fundamental groups of complex non projective surfaces

form a very restricted class, in particular either their Betti number b1 is
equal to 1, or they sit in an exact sequence of the form

1→ Z→ Γ→ πg → 1.

In fact Taubes builds on the method of Seifert and Threlfall in order to
construct a compact complex manifold X with π1(X) = Γ. He takes a (dif-
ferentiable) 4-manifold M with π1(M) = Γ and then, taking the connected
sum with a suitable number of copies of the complex projective plane with
opposed orientation, he achieves that M allows a metric with anti self dual
Weyl tensor. This condition on the metric of M , by a theorem of Atiyah,
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Hitchin and Singer (
AHS
[AHS78]) makes so that the twistor space Tw(M) is a

complex manifold and not only an almost complex manifold. Note that (see
LeBrunAMS
[LB97], especially page 366) the twistor space Tw(M) of an oriented Rie-
mannian 4-manifold is an S2-bundle over M , such that the fibre over P ∈M
equals the sphere bundle of the rank 3 vector subbundle Λ+ ⊂ Λ2(TM).
Here Λ2(TM) = Λ+⊕Λ− is the eigenspace decomposition for the ∗-operator
∗ : Λ2(TM)→ Λ2(TM), such that ∗2 = 1.

The fact that Tw(M) is an S2-bundle over M is of course responsible of
the isomorphism π1(Tw(M)) ∼= π1(M).

Returning to Serre’s question, a first result was given by Johnson and
Rees (

J-R
[J-R87], which was later extended by other authors (

Abr
[ABR92] and

Gromov
[Grom89]):

Theorem 93. (Johnson-Rees)
Let Γ1,Γ2 be two finitely presented groups admitting some non trivial finite

quotient. Then the free product Γ1 ∗Γ2 cannot be the fundamental group of a
normal projective variety. More generally, this holds for any direct product
H × (Γ1 ∗ Γ2).

The idea of proof is to use that the first cohomology group H1(X,C)
carries a nondegenerate skew-symmetric form, obtained simply from cup
product in 1-dimensional cohomology multiplied with the (n− 1)-th power
of the Kähler class.

An obvious observation is that the crucial hypothesis is : projectivity, in
fact, if we take a quasi-projective variety, then the theorem does not hold
true: it suffices to take as X the complement of d points in a projective
curve of genus g, and then π1(X) ∼= F2g+d−1 is a free group. This is not just
a curve phenomenon: already Zariski showed that if C is a plane 6-ix with
equation Q2(x)3−G3(X)2 = 0, where Q2, G3 are generic forms of respective
degrees 2, 3, then π1(P2 \ C) ∼= Z/2 ∗ Z/3.

One important ingredient for the theorem of Johnson and Rees is the
Kurosh subgroup theorem, according to which Γ1 ∗ Γ2 would have a finite
index subgroup of the form Z ∗K, which would therefore also be the funda-
mental group of a projective variety. Another proof is based on the construc-
tion of a flat bundle E corresponding to a homomorphism Z ∗ K → {±1}
with some cohomology group H i(X,E) of odd dimension, contradicting the
extension of Hodge theory to flat rank 1 bundles (see

go-mi
[Go-Mi88]).

Arapura, Bressler and Ramachandran answer in particular one question
raised by Johnson and Rees, namely they show (

Abr
[ABR92]):

Theorem 94. (Arapura, Bressler and Ramachandran) If X is a com-
pact Kähler manifold, then its universal cover X̃ has only one end. And
π1(X) cannot be a free product amalgamated by a finite subgroup.

Here, the ends of a non compact topological space X ′ are just the limit, as
the compact K gets larger, of the connected components of the complement
set X ′ \K.

The theorem of Johnson and Rees admits the following consequence

Corollary 95. (Johnson-Rees) Let X1, X2 be smooth projective manifoldsJ-R
with non zero first Betti number, or more generally with the property that
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π1(Xj) has a non trivial finite quotient. . Then X1]X2 cannot be homeo-
morphic to a projective manifold.

It is interesting to observe that the previous result was extended by Don-
aldson (

don
[Don92]) also to the case where X1, X2 are simply connected smooth

projective surfaces. One could believe that the combination of the two re-
sults implies tout court that the connected sum X1]X2 of two projective
manifolds cannot be homeomorphic to a projective manifold. This is un-
fortunately not clear (at least to the author), because of a deep result by
Toledo (

toledo
[To93]), giving a negative answer to another question posed by Serre

Theorem 96. (Toledo) There exist projective manifolds X whose fun-
damental group G := π1(X) is not residually finite, i.e., such the natural
homomorphism of the fundamental group into its completion (also called
algebraic fundamental group and denoted by π1(X)alg

G→ Ĝ := lim
K<G, Knormal of finite index

G/K

is not injective.

Even the following question does not have yet a positive answer.

Question 97. Does there exist a exist projective manifold X such that G =
π1(X) 6= 0, while Ĝ =: π1(X)alg = 0? ( π1(X) would then be an infinite
group).

If the answer were negative, then the hypothesis in corollary
J-R
95 would be

that X1, X2 are not simply connected.
Concluding this section, it is clear how the results of Siu (and Mostow,

mostow
[Most73]), can be used to obtain restrictions for Kähler groups.

For instance, using the above mentioned techniques of classifying spaces
and harmonic maps, plus some Lie theoretic arguments, Carlson and Toledo
(
C-T
[C-T89]), while giving alternative proofs of the results of Siu, prove:

Theorem 98. (Carlson-Toledo) If X is a compact Kähler manifold, its
fundamental group π1(X) cannot be isomorphic to a discrete subgroup Γ <
SO(1, n) such that D/Γ be compact (here D is the hyperbolic space SO(1, n)/SO(n)).

While similar in spirit is the following theorem of Simpson (
simpsonHiggs
[Simp92]),

for which we recall that a lattice Γ contained in a Lie group G is a discrete
subgroup such that G/Γ has finite volume, and that a reductive Lie group
is of Hodge type if it has a compact Cartan subgroup.

Theorem 99. (Simpson) If X is a compact Kähler manifold, its funda-
mental group π1(X) cannot be isomorphic to a lattice Γ contained in a simple
Lie group not of Hodge type.

For more information on Kähler groups (fundamental group of a cKM
X), we refer to the book

5book
[ABCKT96] and to the survey article by Campana

(
campanaFG
[Cam95A]).

6.6. Kähler versus projective, Kodaira’s problem and Voisin’s neg-
ative answer. Many of the restrictions for a group Γ to be a projective
group (fundamental group of a projective variety X) are indeed restrictions



TOPOLOGICAL METHODS FOR MODULI 71

to be a Kähler group. For long time, it was not clear which was the topologi-
cal difference between projective smooth varieties and compact Kähler man-
ifolds. Even more, there was a question by Kodaira whether any compact
Kähler manifold X would be a deformation (or even a direct deformation)
of a projective manifold Y , according to the following well known definition.

deformation Definition 100. (1) Given two compact complex manifolds Y,X, Y is a
direct deformation of X if there is a smooth proper and connected family
p : X → B, where B is a smooth connected complex curve, such that X and
Y isomorphic to some fibres of p.

(2) We say instead that Y is deformation equivalent to X, if Y is
equivalent to X for the equivalence relation generated by the (symmetric)
relation of direct deformation.

Indeed, Kodaira proved:

Theorem 101. (Kodaira,
kod1
[Kod60]) Every compact Kähler surface is a

deformation of a projective manifold.

It was for long time suspected that Kodaira’s question, although true
in many important cases (tori, surfaces), would be in general false. The
counterexamples by Claire Voisin were based on topological ideas, namely
on the integrality of some multilinear algebra structures on the cohomology
of projective varieties.

To explain this, recall that a Kähler form ξ on a Kähler manifold X
determines the Lefschetz operator on forms of type (p, q):

L : Ap,q → Ap+1,q+1, L(φ) := ξ ∧ φ
whose adjoint Λ is defined, in terms of the Weil and Chern-Weil operators

w :=
∑
p,q

(−1)p−qπp,q, (Weil),

c :=
∑
p,q

(i)p−qπp,q, (Chern−Weil),

(here πp,q is the projector onto the space of forms of type (p, q)) by

L∗ =: Λ, Λ = w ∗ L ∗ .

Λ : Ap,q → Ap−1,q−1.

These operators satisfy the commutation relations:

1)[L,w] = [L, c] = [Λ, w] = [Λ, c] = 0

2) B := [L,Λ] =
∑

(p+ q − n)πp,q,

3)[L,B] = −2L.
In this way the bigraded algebra of differential forms is a representation

of the Lie Algebra sl(2,C), which has the basis:

b =
(
−1 0
0 1

)
,

l =
(

0 0
1 0

)
,
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λ =
(

0 1
0 0

)
,

and Lie bracket given by

b = [l, λ],

−2l = [l, b],

2λ = [λ, b].
For finite dimensional representations of sl(2,C) one has the following

structural result.

lefschetz Proposition 102. Let ρ : sl(2,C) −→ End(W ) be a representation of
sl(2,C), dim(W ) <∞, and set L := ρ(l), Λ := ρ(λ), B := ρ(b).
Then we have:

(1) W = ⊕ν∈ZWν is a finite direct sum, where Wν is the Eigenspace of
B with Eigenvalue ν.

(2) L(Wν) ⊂Wν+2, Λ(Wν) ⊂Wν−2.
(3) Let P = {w | Λw = 0}, be the space of primitive vectors, then we

have a direct sum decomposition

W = ⊕r∈NL
r(P ).

(4) Moreover, the irreducible representations of sl(2,C) are isomorphic
to Sm(C2), where Sm(C2) is the m-th symmetric power of the natural
representation of SL(2,C) on C2 (i.e., the space of homogeneneous
Polynomials of degree m).

(5) Let Pµ := P ∩Wµ: then Pµ = 0 for µ > 0 and

P = ⊕µ∈Z, µ≤0Pµ.

(6) Lr : P−m −→W−m+2r is injective for r ≤ m and zero for r > m.
(7) ∀r Lr : W−r −→Wr is an Isomorphism, and

Wµ = ⊕r∈N, r≥µL
r(Pµ−2r).

On a compact Kähler manifold the projectors πp,q commute with the
Laplace operator, so that the components ψp,q of a harmonic form ψ are
again harmonic, hence the operators L,Λ, . . . preserve the finite dimensional
subspace H of harmonic forms, and one can apply the previous proposition.
The following theorem goes often after the name of Lefschetz decomposition,
and is essential in order to prove the third Lefschetz theorem (see

hyperplanesection
3).

Lefdec Theorem 103. i) Let (X, ξ) be a compact Kähler manifold. Then ∆ com-
mutes with the Operators ∗, ∂, ∂, ∂∗, ∂∗, L, Λ.

ii) In particular: a k- Form η =
∑

p+q=k ηp,q is harmonic if and only if
all the ηp,q’s are harmonic.

iii) Hence there is the so-called Hodge Decomposition of the De Rham
Cohomology:

⊕kHk
DR(X,C) ∼= ⊕kHk(X,C) = ⊕p.qHp,q,

where Hp,q is the space of the harmonic Forms of Type (p, q),
iv) holds the Hodge Symmetry Hp,q = Hq,p.
v) There is a canonical Isomorphism Hp,q ∼= Hq(X,Ωp

X).
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vi) The Lefschetz operators L,Λ make H a representation of SL(2,C),
where Hµ := ⊕p+q=µ+nHp,q, and the space P p,q of primitive forms of type
(p, q) allows a decomposition

Hp,q = ⊕r∈N, r≥µ=p+q−nL
r(Pp−r,q−r),

where P p,q = 0 for p+ q > n.
Moreover, the Hermitian product on P p,q given by

〈〈η, η〉〉 := in−2pqL(n−p−q)(η ∧ η)

is positive definite.

Now, a projective manifold is a compact Kähler manifold when endowed
with the Fubini-Study metric

− 1
2πi

∂∂log(
∑
|σi|2).

This is the Chern Class c1(L) where L is the line bundle OX(1).
Kodaira’s embedding theorem characterizes projective manifolds as those

which admit a Kähler metric whose associated form is integral, i.e., it is the
Chern class of a positive line bundle.

Definition 104. Let M be a compact differentiable manifold of real even
dimension dimR(M) = 2n.

1) Then M is said to admit a real polarized Hodge structure if there exists
a closed two form ξ and a Hodge decomposition of its cohomology algebra
(i.e., as in iii) of theorem

Lefdec
103) such that, defining L(ψ) = ξ∧ψ, and similarly

Λ, properties iv), v) and vi) of theorem
Lefdec
103 hold.

2) Then M is said to admit an integral polarized Hodge structure if one
can take ξ as above in H2(M,Z).

Thus the differentiable manifolds underlying a complex Kähler manifolds
admit a real polarized Hodge structure, while those underlying a complex
projective manifold admit an integral polarized Hodge structure.

Voisin showed that these properties can distinguish between Kähler and
projective manifolds. We need here perhaps to recall once more that defor-
mation equivalent complex manifolds are diffeomorphic.

Theorem 105. ( Voisin,
voisin1
[Vois04]) In any complex dimension n ≥ 4 there

exist compact Kähler manifolds which are not homotopically equivalent to a
complex projective manifold.

The construction is not so complicated, taking a complex torus T with
an appropriate endomorphism ϕ, and blowing up T × T along four subtori

T × {0}, {0} × T,∆T ,Γϕ,

(here, ∆T is the diagonal, and Γϕ is the graph of ϕ) one obtains the desired
Kähler manifold X.

The crucial property is the following lemma

Lemma 106. (Voisin,
voisin1
[Vois04]) Assume that the characteristic polynomial

f of ϕ, a monic integral polynomial, has all eigenvalues of multiplicity 1,
none of them is real, and moreover the Galois group of its splittiing field is
the symmetric group S2n.
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Then T is not an Abelian variety.

We refer to the original paper for details of the construction and proof.
However, since our X is obviously bimeromorphic to the torus T ×T , which
is a deformation of a projective manifold, later Voisin went on to prove a
stronger result in

voisin2
[Vois06].

Theorem 107. ( Voisin,
voisin2
[Vois06]) In any complex dimension n ≥ 10 there

exist compact Kähler manifolds such that no compact smooth bimeromorphic
model X ′ of X is homotopically equivalent to a complex projective manifold.
Indeed, no such model X ′ has the same rational cohomology ring of a pro-
jective manifold.

That the rational cohomology ring was the essential topological invari-
ant of Kähler manifolds, had been found already some 30 years before by
Deligne, Griffiths, Morgan and Sullivan (in

DGMS
[DGMS75]), using Sullivan’s the-

ory of rational homotopy theory and minimal models of graded differential
algebras (see

GriffithsMorgan
[G-M-81] for a thourough introduction, and for some of the

notation that we shall introduce here without explanation).

DGMS Theorem 108. Let X,Y be compact complex manifolds, which are either
Kähler, or such that the ddc lemma holds for them (as for instance it happens
when X is bimeromorphic to a cKM).

1) Then the real homotopy type of X is determined by its real coho-
mology ring H∗(X,R) , and similarly the effect of every holomorphic map
f : X → Y on real homotopy types is a formal consequence of the induced
homomorphism of real cohomology rings f∗ : H∗(Y,R)→ H∗(X,R).

2) If moreover X is simply connected, then the graded Lie algebra of real
homotopy groups π∗(X)⊗ZR depends only on the cohomology ring H∗(X,R).
In particular, all Massey products of any order are zero over Q.

3) If instead X is not simply connected, then the real form of the canonical
tower of nilpotent quotients of π1(X) (the real form is obtained taking ⊗ZR
of graded pieces and extension maps) is completely determined by H1(X,R)
and the cup product map

H1(X,R)×H1(X,R)→ H2(X,R).

The article
DGMS
108 contains several proofs, according to the taste of the sev-

eral authors.
A basic property of compact Kähler manifolds which plays here a key role

is the following lemma, also called (principle of the two types in
gh
[G-H78].

Lemma 109. (ddc-Lemma) Let φ be a differential form such that
1) ∂φ = ∂φ = 0 (equivalently, dφ = dcφ = 0, where dc is the real operator

−i(∂ − ∂)),
2) d(φ) = 0 (or dc(φ) = 0),
then
3) there exists ψ such that φ = ∂∂ψ (equivalently, there exists ψ such that

φ = ddc(ψ)).

One can see the relation of the above lemma with the vanishing of Massey
products, which we now define in the simplest case.
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Definition 110. Let X be a topological space, and let a, b, c ∈ H i(X,R) be
cohomology classes such that

a ∪ b = b ∪ c = 0.

Then the triple Massey product < a, b, c > is defined as follows: take
cocycle representatives a′, b′, c′ for a, b, c, respectively, and cochains x, y ∈
C2i−1(X,R) such that

dx = a′ ∪ b′, dy = b′ ∪ c′.

Then < a, b, c > is the class of

a′ ∪ y + (−1)i+1x ∪ c′

inside
H3i−1(X,R)/(a ∪H2i−1(X,R) +H2i−1(X,R) ∪ c).

Here R is any ring of coefficients: if we take X acKM, and R = R, or
R = Q, then these Massey products vanish, as stated in

DGMS
108.

Instead things are different for torsion coefficients, as shown by Torsten
Ekedahl in

teke
[Eke86].

Theorem 111. i) There exist a smooth complex projective surface X and
a, b, c ∈ H1(X,Z/l) such that a ∪ b = b ∪ c = 0, but < a, b, c >6= 0.

ii) Let X → P6 be an embedding and let Y be the blow up of P6 along X.
Then there exist a′′, b′′, c′′ ∈ H3(X,Z/l) such that a′′ ∪ b′′ = b′′ ∪ c′′ = 0,

but < a′′, b′′, c′′ >6= 0.

Remark 112. 1) As already mentioned, theorem
Lefdec
103 is an essential ingre-

dient in the proof of the third Lefschetz theorem. Indeed, for a smooth
hyperplane section W = H ∩X of a projective variety X, the cup product
with the hyperplane class h ∈ H2(X,Z) corresponds at the level of forms
to the operator L given by wedge product with ξ, the first Chern form of
OX(H).

2) Most Kähler manifolds, for instance a general complex torus, do not
admit any nontrivial analytic subvariety (nontrivial means: different from
X or from a point). Whereas for projective varieties X of dimension n ≥ 2
one can take hyperplane sections successively and obtain a surface S with
π1(S) ∼= π1(X). Hence the well known fact that the set of fundamental
groups of smooth projective varieties is just the set of fundamental groups
of smooth algebraic surfaces.

3) As explained in the book by Shafarevich (
shaf
[Shaf74]), the same idea was

used by J.P. Serre to show that any finite group G occurs as the funda-
mental group of a smooth projective surface S. Serre considers the regular
representation on Y G, where for instance Y = Pm is a simply connected
projective variety of dimension m ≥ 3. The quotient X := (Y G)/G is sin-
gular on the image of the big diagonal, which however has codimension at
least m. Cutting X with an appropriate number of general hyperplanes one
obtains a surface S with π1(S) ∼= G.

4) Serre’s result is used in Ekedahl’s theorem: Ekedahl shows the existence
of a group G of order l5 such that there is a principal fibration K(G, 1) →
K((Z/l)3, 1) with fibre a K((Z/l)2, 1); moreover he deduces the existence of
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elements a, b, c as desired from the fact that there is some CW complex with
non zero triple Massey product.

Then the blow up of P6 along a surface X with π1(X) ∼= G is used to
obtain an example with classes in the third cohomology group H3(Y,Z/l).

6.7. The so-called Shafarevich conjecture. One of the many reasons of
the beauty of the theory of curves is given by the uniformization theorem,
stating that any complex manifold C of dimension 1 which is not of special
type (i.e., not P1, C, C∗, or an elliptic curve) has as universal covering the
unit disk B1 = {z ∈ C||z| < 1}, which is biholomorphic to the upper half
plane H = {z ∈ C|Im(z) > 0}.

In other terms, the universal cover is either P1, C, or H according to the
sign of the curvature of a metric with constant curvature (positive, zero or
negative).

In higher dimension there are simply connected projective varieties which
have a positive dimensional moduli space: already in the case of surfaces,
e.g., smooth surfaces in P3, of degree at least 3, there is an uncountable
family of pairwise non isomorphic varieties.

So, if there is some analogy, it must be a weaker one: and the first possible
direction is to relate somehow Kodaira dimension with curvature.

In the case where the canonical divisor KX is ample, there is the theo-
rem of Aubin and Yau (see

Yau78
[Yau78],

Aubin
[Aub78]) showing the existence, on a

projective manifold with ample canonical divisor KX , of a Kähler - Einstein
metric, i.e. a Kähler metric ω such that

Ric(ω) = −ω.
This theorem is partly the right substitute for the uniformization theorem

in dimension n > 1, but the Kähler - Einstein condition, i.e. the existence
of a Kähler metric ω such that

Ric(ω) = cω,

forces KX ample if c < 0, KX trivial if c = 0, and −KX ample if c > 0.
In the case where KX is trivial, Yau showed the existence of a Kähler -

Einstein metric in
Yau78
[Yau78], while the existence of such a metric on Fano man-

ifolds (those with ample anticanonical divisor −KX) has only recently been
settled, under a stability assumption (see

donKE
[CDS14],

donKEfull
[CDS12-3],

tianKE
[T-Z13]).

In the general case, one is looking for suitable metrics on singular vari-
eties, but we shall not dwell on this here, since we are focusing on topolog-
ical aspects: we refer for instance to

EGZ
[EGZ09] (see also

guenancia
[Guena13]). Once

more,however, curvature influences topology: Yau showed in fact (
yau
[Yau77])

that, for a projective manifold with ample canonical divisor KX , the famous
Yau inequality is valid

Kn
X ≤

2(n+ 1)
n

Kn−2
X c2(X),

equality holding if and only if the universal cover X̃ is the unit ball Bn in
Cn.

The second possible direction is to investigate properties of the universal
covering X̃ of a projective variety. For instance, one analogue of projective
curves of genus g ≥ 2, whose universal cover is the unit ball B1 ⊂ C, is
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given by the compact complex manifolds X whose universal covering X̃ is
biholomorphic to a bounded domain Ω ⊂ Cn.

Necessarily such a manifold X is projective and has ample canonical di-
visor KX (see

kodemb
[Kod54],

Kodaira-Morrow
[Kod-Mor72], Theorem 8.4 page 144, where the

Bergman metric is used, while the method of Poincaré series is used in
sieg
[Sieg73],Theorem 3 page 117 , see also

Kollar-Shaf
[Kol95], Chapter 5).

Moreover, it is known, by a theorem of Siegel (
Siegel
[Sie48], cf. also

Kobayashi
[Koba58],

Theorem 6.2), that Ω must be holomorphically convex, indeed a Stein do-
main. We recall these concepts (see for instance

AG
[A-G62]).

Stein Definition 113. A complex space X is said to be a Stein complex space if
and only if one of the following equivalent conditions hold:

• 1S) X is a closed analytic subspace of CN , for some N
• 2S) for any coherent analytic sheaf F , we have Hj(X,F) = 0, for

all j ≥ 1,
• 3S) X coincides with the Maximal Spectrum Specm(HolX) of its al-

gebra of global holomorphic functions HolX := H0(X,OX) (Specm(HolX)
is the subspace of Spec(HolX) consisting of the maximal ideals)
• 4S) Global holomorphic functions separate points and X possesses

a C∞ strictly plurisubharmonic exhaustion function, i.e., there is
a real valued proper function f : X → R such that the Levi form
L(f) := i∂∂f is strictly positive definite on Zariski tangent spaces.

A complex space is said to be holomorphically convex if and only if one of
the following equivalent conditions hold:

• 1HC) For each compact K, its envelope of holomorphy K ′ := {x ∈
X||f(x) ≤ maxK |f |} is also compact
• 2HC) X admits a proper holomorphic map s : X → Σ to a complex

Stein space (this map is called Steinification, or Cartan-Remmert
reduction), which induces an isomorphism of function algebras F ∗ :
HolΣ → HolX .
• 3HC) X admits a real valued twice differentiable proper function
f : X → R and a compact K ⊂ X such that

3i) ) there is a c ∈ R with f−1((−∞, c]) ⊂ K
3ii) the Levi form L(f) := i∂∂f is semipositive definite and strictly

positive definite outside K.
• Finally, a complex space X is Stein manifold iff it is holomorphically

convex and global holomorphic functions separate points.

Now, a compact complex manifold (or space) is by definition holomorphi-
cally convex, so this notion captures two extreme behaviours of the universal
covers we just described: bounded domains in Cn, and compact manifolds.
In his book

shaf
[Shaf74] Shafarevich answered the following

Shafarevich’s question: is the universal covering X̃ of a projective
variety X, or of a compact Kähler manifold X, holomorphically convex?

Remark 114. The answer is negative for a compact complex manifold
which is not Kähler, since for instance Hopf surfaces X = (C2 \{0})/Z have
C2 \ {0} as universal cover, which is not Stein since it has the same algebra
of holomorphic functions as the larger affine space C2.



78 F. CATANESE

Observe that all the K(π, 1) projective manifolds we have considered so
far satisfy the Shafarevich property, since their universal covering is either
Cn or a bounded domain in Cn (this holds also for Kodaira fibred surfaces,
by Bers’ simultaneous uniformization,

Bers
[Bers60]).

An interesting question concerns projective varieties whose universal cover
is a bounded domain D in Cn. In this case the group Aut(D) contains an
infinite cocompact subgroup, so it is natural to look first at domains which
have a big group of automorphisms, especially at bounded homogeneous
domains, i.e., bounded domains such that the group Aut(Ω) of biholomor-
phisms of Ω acts transitively.

But, as already mentioned, a classical result of J. Hano (see
Hano
[Hano57]

Theorem IV, page 886, and Lemma 6.2, page 317 of
milnorcurv
[Mil76]) asserts that a

bounded homogeneous domain that covers a compact complex manifold is
a bounded symmetric domain.

These naturally occur as such universal covers: Borel proved in
Bo63
[Bore63]

that for each bounded symmetric domain there exists a compact free quo-
tient X = Ω/Γ, called a Hermitian locally symmetric projective manifold
(these were also called compact Clifford-Klein forms of the symmetric do-
main Ω).

By taking finite ramified coverings of such locally symmetric varieties,
and blow ups of points of the latter, we easily obtain many examples which
are holomorphically convex but not Stein. But if we blow up some subva-
riety Y ⊂ X of positive dimension some care has to be taken: what is the
inverse image of Y in the universal cover X̃? It depends on the image of
π1(Y ) inside π1(X): if the image is finite, then we obtain a disjoint union of
compact varieties, else the connected components of the inverse image are
not compact.

A more general discussion leads to the following definition.

Definition 115. Assume that the Shafarevich property holds for a compact
Kähler manifold: then the fundamental group π1(X) acts properly discontin-
uously on X̃ and on its Steinification Σ, hence one has a quotient complex
space holomorphically dominated by X:

Shaf(X) := Σ/π1(X), shafX : X = X̃/π1(X)→ Shaf(X) = Σ/π1(X).

Shaf(X) is then called the Shafarevich variety of X, and shafX is called
the Shafarevich morphism. They are characterized by the following universal
property:

a subvariety Y ⊂ X is mapped to a point in Shaf(X) if and only if,
letting Y n be the normalization of Y , the image of π1(Y n)→ π1(X)
is finite.

So, a first attempt towards the question was in the 90’s to verify the
existence of the Shafarevich morphism shafX .

A weaker result was shown by Kollár (
Kol-Shaf-art
[Kol93]) and by Campana (

campanaShaf
[Cam94]):

we borrow here the version of Kóllar, which we find more clearly formulated.

Theorem 116. Let X be a normal projective variety: then X admits a
rational Shafarevich map shafX : X 99K Shaf(X), with the following prop-
erties:
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1) shafX has connected fibres
2) there are countably many subvarieties Di ⊂ X such that for every

subvariety Y ⊂ X, Y * ∪iDi, shafX(Y ) is a point if and only if, letting Y n

be the normalization of Y , the image of π1(Y n)→ π1(X) is finite.
Moreover, the above properties determine Shaf(X) up to birational equiv-

alence.

contradiction Remark 117. 1) A subtle point concerning the definition of Shafarevich
morphism is the one of passing to the normalization of a subvariety Y . In
fact, the normalization Y n has a holomorphic map to X since X is normal,
and the fibre product Y n×X X̃ has a holomorphic map to X̃. If the image of
π1(Y n)→ π1(X) is finite, this fibre product consists of a (possibly infinite)
Galois unramified covering of Y n whose components are compact.

If X̃ is holomorphically convex, then these components map to points in
the Steinification Σ.

2) Consider the following special situation: X is a smooth rational sur-
face, and Y is a curve of geometric genus zero with a node. Then the
normalization is P1 and the Shafarevich map should contract Y n.

Assume however that π1(Y ) ∼= Z injects into π1(X): then the inverse
image of Y in X̃ consists of an infinite chain of P1’s, which should be con-
tracted by the Steinification morphism, hence this map would not be proper.
The existence of a curve satisfying these two properties would then give a
negative answer to the Shafarevich question.

3) In other words, the Shafarevich property implies that:
(***) if π1(Y n)→ π1(X) has finite image , then also π1(Y )→ π1(X) has

finite image.

So, we can define a subvariety to be Shafarevich bad if
(SB) π1(Y n)→ π1(X) has finite image , but π1(Y )→ π1(X) has infinite

image.
The rough philosophy of the existence of a rational Shafarevich map is

thus that Shafarevich bad subvarieties do not move in families which fill
the whole X, but they are contained in a countable union of subvarieties
Di (one has indeed to take into account also finite union of subvarieties,
for instance two P1’s crossing transversally in 2 points: these are called by
Kollár ‘normal cycles’).

But still, could they exist, giving a negative answer to the Shafarevich
question?

Potential counterexampes were proposed by Bogomolov and Katzarkov
(
bog-katz
[Bog-Katz-98]), considering fibred surfaces f : X → B. Indeed, for each

projective surface, after blowing up a finite number of points, we can always
obtain such a fibration.

Assume that f : X → B is a fibration of hyperbolic type: then, passing
to a finite unramified covering of X and passing to a finite covering of the
base B, we may assume that the fibration does not have multiple fibres.

Then (see theorem
orb-fibr
87) the surjection π1(X)→ π1(B) induces an infinite

unramified covering

f̂ : X̂ → B̂ := H = B1.
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If instead f : X → B is a fibration of parabolic type, we get an infinite
unramified covering

f̂ : X̂ → B̂ := C.
In the elliptic case, B = P1 and we set X̂ := X, B̂ := B.
Now, the Shafarevich question has a positive answer if the fundamental

group of X̂, the image of the fundamental group of a general fibre F inside
π1(X), is finite.

Assume instead that this image is infinite and look at components of the
singular fibres: we are interested to see whether we find some Shafarevich
bad cycle. For this, it is important to describe the fundamental group π1(X̂)
as a quotient of πg = π1(F ), where F is a general fibre, and g is its genus.

Observe preliminarily that we may assume that there are singular fi-
bres, else either we have a Kodaira fibration, or an isotrivial fibration (see
miglio
[Migl95]) so that, denoting by B∗ the complement of the critical locus of f̂ ,
the fundamental group of B∗ is a free group.

For each singular fibre Ft, t ∈ B, a neighbourhood of Ft is retractible to
Ft, and because of this we have a continuous map F → Ft.

The group of local vanishing cycles is defined as the kernel of π1(F )→
π1(Ft),and denoted by V ant.

Then we obtain a description of π1(X̂) as

π1(X̂) = πg/〈〈∪t{V ant}〉〉,
where 〈〈M〉〉 denotes the subgroup normally generated by M .

Bogomolov and Katzarkov consider the situation where the fibre singu-
larities are exactly nodes, and then for each node p there is a vanishing cycle
vanp on the nearby smooth fibre. In this case we divide by the subgroup
normally generated by the vanishing cycles vanp.

Their first trick is now to replace the original fibration by the pull back
via a map ϕ : B′ → B which is ramified at each critical value t of multiplicity
N .

In this way they obtain a surface X ′ which is singular, with singular points
q of type AN−1, i.e., with local equation zN = xy. Since these are quotient
singularities C2/Z/N , they have local fundamental group π1,loc(X ′ \ {q}) =
Z/N .

As a second step, they construct another surface SN such that the image
of π1(SN ) has finite index inside π1(X ′ \ Sing(X ′)).

They show (lemma 2.7 and theorem 2.3) the following.

Proposition 118. The Bogomolov Katzarkov procedure constructs a new
fibred surface SN such that

π1(ŜN ) = πg/〈〈∪p{vanNp }〉〉.

In this way they propose to construct counterexamples to the Shafarevich
question (with non residually finite fundamental group), provide certain
group theoretic questions have an affirmative answer.

Remark 119. We want to point out a topological consequence of the Sha-
farevich property, for simplicity we consider only the case of a projective
surface X with infinite fundamental group.
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Assume that X̃ is holomorphically convex, and let s : X̃ → Σ the Cartan-
Remmert reduction morphism, where Σ is Stein and simply connected. If
dim(Σ) = 1, then Σ is contractible, otherwise we know (

AF1
[A-F59]) thatΣ is

homotopy equivalent to a CW complex of real dimension 2.
In the first case we have a fibration with compact fibres of complex di-

mension 1, in the second case we have a discrete set such that the fibre has
complex dimension 1, and the conclusion is that:

if a projective surface X satisfies the Shafarevich property, then
X̃ is homotopy equivalent to a CW complex of real dimension 2.

To my knowledge, even this topological corollary of the Shafarevich prop-
erty is yet unproven.

On the other hand, the main assertion of the Shafarevich property is that
the quotient of X̃ by the equivalence relation which contracts to points the
compact analytic subspaces of X̃ is not only a complex space, by a Stein
space. This means that one has to produce a lot of holomorphic functions
on X̃, in order to embed the quotient as a closed analytic subspace in some
CN .

There are positive results, which answer the Shafarevich question in af-
firmative provided the fundamental group of X satisfies certain properties,
related somehow to some of the themes treated in this article, which is the
existence of certain homomorphisms to fundamental groups of classifying
spaces, and to the theory of harmonic maps. To give a very very simple
idea, an easy result in this directions is that X̃ is a Stein manifold if the
Albanese morphism α : X → A := Alb(X) is a finite covering.

Now, since there has been a series of results in this direction,we refer to
the introduction and bibliography in the most recent one (

ekpr
[EKPR12]) for

some history of the problem and for more information concerning previous
results.

We prefer however to cite some previous results due to Katzarkov-Ramachandran
(
Katz-Ram
[KR98]), respectively to Eyssidieux (

eyss-inv
[Eyss04]) which are simpler to state.

We only want to recall that a reductive representation is one whose im-
age group is reductive, i.e., all of its representations are semi-simple, or
completely reducible (any invariant subspace W ⊂ V has an invariant com-
plement).

Theorem 120. (Katzarkov-Ramachandran)
Let X be a normal Kähler compact surface, and X ′ → X an unramified

cover with Galois group Γ (so X = X ′/Γ). If Γ does not contain Z as
a finite index subgroup and it admits an almost faithful (i.e., with finite
kernel) Zariski dense representation in a connected reductive complex Lie
group, then X ′ is holomorphically convex.

Theorem 121. (Eyssidieux)
Let X be a smooth projective variety, let ρ : π1(X) → G, and let X̃ρ :=

X̃/ker(ρ) be the connected unramified covering of X associated to ker(ρ).
1) Let ρ : π1(X)→ GL(n,C) be a reductive representation. Then there is

a relative Shafarevich morphism

shafρ : X → Shafρ(X)
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to a normal projective variety, satisfying the universal property that for each
normal variety Z mapping to X, its image in Shafρ(X) is a point if and
only if the image of π1(Z) → π1(X) is finite. Moreover, the connected
components of the fibres of X̃ρ → Shafρ(X) are compact.

2) Let M be a quasi compact and absolute constructible (i.e., it remains
constructible after the action of each σ ∈ Aut(C)) set of conjugacy classes
of reductive linear representations of π1(X), and let HM be the intersection
of the respective kernels. Then X̃M := X̃/HM is holomorphically convex.

6.8. Strong and weak rigidity for projective K(π, 1) manifolds. We
want here to see how the moduli problem is solved for many projective
K(π, 1) manifolds, which were mentioned in a previous section. However,
we want here not to be entangled in the technical discussion whether a
variety of moduli exists, and, if so, which properties does it have. So, we use
the notion of deformation equivalence introduced by Kodaira and Spencer.

Definition 122. (Rigidity)

(1) Let X be a projective manifold: then we say that X is strongly
rigid if, for each other projective manifold Y homotopy equivalent
to X, then Y is isomorphic to X or to the complex conjugate variety
X̄ (X ∼= Y or X̄ ∼= Y ).

(2) We say instead that X is weakly rigid if, for each other projec-
tive manifold Y homotopy equivalent to X, then either Y is direct
deformation of X, or Y is direct deformation of X̄ (see

deformation
100).

(3) We say instead that X is quasi rigid if, for each other projective
manifold Y homotopy equivalent to X, then either Y is deforma-
tion equivalent to X, or Y is deformation equivalent to X̄
(recall that deformation equivalence is the equivalence relation gen-
erated by the relation of direct deformation).

Remark 123. (a) This is the intuitive meaning of the above definition:
assume that there is a moduli space M, whose points correspond to iso-
morphism classes of certain varieties, and such that for each flat family
p : X → B the natural map B →M associating to b ∈ B the isomorphism
class of the fibre Xb := p−1(b) is holomorphic. Then to be a direct defor-
mation of each other means to belong to the same irreducible component of
the moduli space M, while being deformation equivalent means to belong
to the same connected component of the moduli space M.

(b) The same definition can be given in the category of compact Kähler
manifolds, or in the category of compact complex manifolds.

(c) Of course, if p : X → B is a smooth proper family with base B
a smooth connected complex manifold, then all the fibres Xb are direct
deformation equivalent.

(d) We shall need in the sequel some more technical generalization of these
notions, which amount, given a product of varieties (X1 ×X2 × · · · ×Xh),
to take the complex conjugate of a certain number of factors.

Definition 124. Let X be a projective manifold: then we say that X is
strongly * rigid if, for each other projective manifold Y homotopy equiv-
alent to X, then Y is isomorphic to X or to another projective variety Z
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obtained by X as follows: there is an unramified covering X ′ of X ( thus
X = X ′/G) which splits as a product

X ′ = (X ′1 ×X ′2 × · · · ×X ′h).

Set then, for j ∈ J , Z ′j := X ′j, and Z ′j := X ′j for j /∈ J . Consider then the
action of G on Z ′ = (Z ′1 × Z ′2 × · · · × Z ′h), and let Z := Z ′/G.

Replacing the word: ‘isomorphic’ by ‘direct deformation equivalent’, resp.
‘deformation equivalent’, we define the notion of weakly * rigid, resp.
quasi * rigid.

(1) The first example, the one of projective curves, was essentially al-
ready discussed: we have the universal family

pg : Cg → Tg,

hence, according to the above definition, projective curves are
weakly rigid (and in a stronger way, since we do not need to allow
for complex conjugation, as the complex conjugate C̄ is a direct
deformation of C).

(2) Complex tori are weakly rigid in the category of compact
Kähler manifolds, since any manifold with the same integral co-
homology of a complex torus is a complex torus (theorem

tori
69).

Moreover, complex tori are parametrized by an open set Tn of
the complex Grassmann Manifold Gr(n, 2n), image of the open set
of matrices {Ω ∈ Mat(2n, n; C) | (i)ndet(ΩΩ) > 0}, as follows: we
consider a fixed lattice Γ ∼= Z2n, and to each matrix Ω as above we
associate the subspace

V = (Ω)(Cn),

so that V ∈ Gr(n, 2n) and Γ⊗ C ∼= V ⊕ V̄ .
Finally, to Ω we associate the torus YV := V/pV (Γ), pV : V ⊕ V̄ →

V being the projection onto the first addendum.
As it was shown in

cat02
[Cat02] (cf. also

cat04
[Cat04]) Tn is a connected

component of Teichmüller space.
(3) Complex tori are not quasi rigid in the category of compact complex

manifolds. Sommese generalized some construction by Blanchard
and Calabi, obtaining (

somm75
[Som75]) that the space of complex structures

on a six dimensional real torus is not connected.
(4) Abelian varieties are quasi rigid, but not weakly rigid. In fact,

we saw that all the Abelian varieties of dimension g admitting a
polarization of type D′ are contained in a family over Hg. Moreover,
products E1 × · · · ×Eg of elliptic curves admit polarizations of each
possible type.

(5) Locally symmetric manifolds D/Γ where D is irreducible of dimen-
sion > 1 are strongly rigid. by Siu’s theorem

cite
81.

(6) Locally symmetric manifolds D/Γ with the property that D does
not have any irreducible factor of dimension 1 are strongly * rigid
by Siu’s theorem

cite
81.

(7) Varieties isogenous to a product (VIP) are weakly * rigid in all di-
mensions, according to theorem

isog
126, that we are going to state soon
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(see below). They are are weakly rigid in dimension n = 2 only if
we require the homotopy equivalence to be orientation preserving.

(8) Among the VIP’s, the strongly * rigid are exactly the quotients
X = (C1 × C2 × · · · × Cn)/G where G not only acts freely, but
satisfies the following property. Denote by G0 ⊂ G (see

isogenous
[Cat00] for

more details) the subgroup which does not permute the factors, and
observe that

G0 ⊂ Aut(C1)×Aut(C2)× · · · ×Aut(Cn).

Then G0 operates on each curve Ci, and the required condition is
that this action is rigid, more precisely we want : Ci/G0 ∼= P1 and
the quotient map pi : Ci → Ci/G

0 ∼= P1 is branched in three points
(we shall also say that we have then a triangle curve).

Again, in dimension n = 2 we get some strongly rigid surfaces,
which have been called (ibidem) Beauville surfaces. We propose
therefore to call Beauville varieties the strongly * rigid VIP’s.

(9) Hyperelliptic surfaces are weakly rigid, as classically known, see be-
low for a more general result.

(10) It is unclear, as we shall see, whether Kodaira fibred surfaces are
weakly * rigid, however any surface homotopically equivalent to a
Kodaira fibred surface is also a Kodaira fibred surface. Indeed a
stronger result, with a similar method to the one of

isogenous
[Cat00] was

shown by Kotschick (see
kotschick
[Kot99] and theorem

kot
128 below), after some

partial results by Jost and Yau.
(11) Generalized hyperelliptic varieties X are a class of varieties for which

a weaker property holds. Namely, if Y is a compact Kähler manifold
which is homotopy equivalent to X (one can relax this assumption
a bit, obtaining stronger results), then Y is the quotient of Cn by
an affine action of Γ := π1(X) ∼= π1(Y ) which, by proposition

affine
140,

has the same real affine type as the action yielding X as a quotient.
But the Hodge type could be different, except in special cases where
weak rigidity holds.

The following (see
isogenous
[Cat00] and

cat03
[Cat03]) is the main result concerning

surfaces isogenous to a product, and is a stronger result than weak * rigidity.

isogenous Theorem 125. a) A projective smooth surface S is isogenous to a product
of two curves of respective genera g1, g2 ≥ 2 , if and only if the following
two conditions are satisfied:

1) there is an exact sequence

1→ πg1 × πg2 → π = π1(S)→ G→ 1,

where G is a finite group and where πgi denotes the fundamental group of a
projective curve of genus gi ≥ 2;

2) e(S)(= c2(S)) = 4
|G|(g1 − 1)(g2 − 1).

b) Write S = (C1 × C2)/G. Any surface X with the same topological Euler
number and the same fundamental group as S is diffeomorphic to S and is
also isogenous to a product. There is a smooth proper family with connected
smooth base manifold T , p : X → T having two fibres respectively isomorphic
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to X, and Y , where Y is one of the 4 surfaces S = (C1 × C2)/G, S+− :=
(C1 × C2)/G, S̄ = (C1 × C2)/G, S−+ := (C1 × C2)/G = S+−.

c) The corresponding subset of the moduli space of surfaces of general
type M

top
S = M

diff
S , corresponding to surfaces orientedly homeomorphic,

resp. orientedly diffeomorphic to S, is either irreducible and connected or it
contains two connected components which are exchanged by complex conju-
gation.

In particular, if S′ is orientedly diffeomorphic to S, then S′ is deformation
equivalent to S or to S̄.

Idea of the proof Γ := π1(S) admits a subgroup Γ′ of index d such that
Γ′ ∼= (πg1 × πg2). Let S′ be the associated unramified covering of S. Then
application of the isotropic subspace theorem or of theorem

orb-fibr
87 yields a

holomorphic map F := f1 × f2 : S′ → C ′1 × C ′2.
Then the fibres of f1 have genus h2 ≥ g2, hence by the Zeuthen Segre

formula (
ZS
2) e(S′) ≥ 4(h2 − 1)(g1 − 1), equality holding if and only if all the

fibres are smooth.
But e(S′) = 4(g1−1)(g2−1) ≤ 4(h2−1)(g1−1), so h2 = g2, all the fibres

are smooth hence isomorphic to C ′2; therefore F is an isomorphism.
The second assertion follows from the refined Nielsen realisation theorem,

considering the action of the index two subgroup G0 of G. Notice that if a
group, here G0, acts on a curve C, then it also acts on the complex conjugate
curve, thus G0 ⊂ Aut(C) ⇒ G0 ⊂ Aut(C̄). But since complex conjugation
is orientation reversing, these two actions are conjugate by Out(πg), not
necessarily by Mapg = Out+(πg).

Recall now that the exact sequence

1→ πg1 × πg2 → Γ0 → G0 → 1

yields two injective homomorphisms ρj : G0 → Out(πgj ) for j = 1, 2. Now,
we choose the isomorphism π1(Cj) ∼= πgj in such a way that it is orientation
preserving. The isomorphism π1(X) ∼= π1(S), and the realization X = (C ′1×
C ′2)/G then gives an isomorphism φj : π1(C ′j) ∼= πgj . If this isomorphism is
orientation preserving, then the two actions of G0 on Cj , C ′j are deformation
of each other by the refined Nielsen realization. If instead this isomorphism is
orientation reversing, then we replace Cj by Cj and now the two actions are
conjugate byMapg, so we can apply the refined Nielsen realisation theorem
to Cj , C

′
j . Finally, in the case where the homeomorphism is orientation

preserving, then either both φ1, φ2 are orientation preserving, or they are
both orientation reversing. Then X is a deformation either of S or of S̄.

�
The first part of the following theorem is instead a small improvement of

theorem 7.1 of
isogenous
[Cat00], the second part is theorem 7.7 ibidem, and relies on

the results of Mok (
Mok1
[Mok85].

Mok2
[Mok88]).

isog Theorem 126. (1) Let Y be a projective variety of dimension n with KY

ample and that Γ := π1(Y ) admits a subgroup Γ′ of index d such that

Γ′ ∼= (πg1 × πg2 × · · · × πgn), gi ≥ 2 ∀i,
and moreover H2n(Γ,Z)→ H2n(Y,Z) is an isomorphism.

Then Y is a variety isogenous to a product.
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(2) Let X be projective variety with universal covering the polydisk Hn,
and let Y be a projective variety of dimension n with KY ample and such
that π1(Y ) ∼= Γ := π1(X), and assume that H2n(Γ,Z) → H2n(Y,Z) is an
isomorphism. Then also Y has Hn as universal covering, Y = Hn/Γ.

(3) In particular X is weakly * rigid, and strongly * rigid if the action
of Γ is irreducible (this means that there is no finite index subgroup Γ′ < Γ
and an isomorphism Hn ∼= Hm ×Hn−m such that

Γ′ = Γ′1 × Γ′2, Γ′1 ⊂ Aut(Hm), Γ′2 ⊂ Aut(Hn−m).

Proof of (1): As in the previous theorem we take the associated unramified
covering Y ′ of Y associated to Γ′, and with the same argument we produce
a holomorphic map

F : Y ′ → Z := C1 × C2 × · · · × Cn.
We claim that F is an isomorphism. Indeed, by the assumptionH2n(Γ,Z) ∼=

H2n(Y,Z) follows that H2n(Γ′,Z) ∼= H2n(Y ′,Z), hence F has degree 1 and
is a birational morphism. Let R be the ramification divisor of F , so that
KY ′ = F ∗(KZ) + R. Now, since F is birational we have H0(mKY ′) ∼=
H0(mKZ), for all m ≥ 0. This implies for the corresponding linear systems
of divisors:

|mKY ′ | = F ∗(|mKZ |) +mR.

For m >> 0 this shows that KY ′ cannot be ample, contradicting the am-
pleness of KY .

�

Remark 127. Part (2) of the above theorem is shown in
isogenous
[Cat00], while part

(3) follows by the same argument given in the proof of theorem
isogenous
125 in the

case where X is isogenous to a product. We omit the proof of (3) in general.

kot Theorem 128. (Kotschick) Assume that S is a compact Kähler surface,
and that

(i) its fundamental group sits into an exact sequence, where g, b ≥ 2:

1→ πg → π1(S)→ πb → 1
(ii) e(S) = 4(b− 1)(g − 1).
Then S has a smooth holomorphic fibration f : S → B, where B is a

projective curve of genus b, and where all the fibres are smooth projective
curves of genus g. f is a Kodaira fibration if and only if the associated
homomorphism ρ : πb → Mapg has image of infinite order, else it is a
surface isogenous to a product of unmixed type and where the action on the
first curve is free.

Proof. By theorem
orb-fibr
87 the above exact sequence yields a fibration f :

S → B such that there is a surjection π1(F ) → πg, where F is a smooth
fibre. Hence, denoting by h the genus of F , we conclude that h ≥ g, and
again we can use the Zeuthen-Segre formula to conclude that h = g and
that all fibres are smooth. So F is a smooth fibration. Let C ′ → C be the
unramified covering associated to ker(ρ): then the pull back family S′ → C ′

has a topological trivialization, hence is a pull back of the universal family
Cg → Tg for an appropriate holomorphic map ϕ : C ′ → Tg.
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If ker(ρ) has finite index, then C ′ is compact and, since Teichmüller space
is a bounded domain in C3g−3, the holomorphic map is constant. Therefore
S′ is a product C ′ × C2 and, denoting by G := Im(ρ), S = (C ′ × C2), and
we get exactly the surfaces isogenous to a product such that the action of
G on the first curve C1 = C ′ is free.

If instead G := Im(ρ) is infinite, then the map of C ′ into Teichmüller
space is not constant, since the isotropy group of a point corresponding to
a curve F is, as we saw, equal to the group of automorphisms of F (which
is finite). Therefore, in this case, we have a Kodaira fibration.

�

Remark 129. Jost and Yau (
J-Y83
[J-Y83]) proved a weaker result, that a defor-

mation of the original examples by Kodaira of Kodaira fibrations are again
Kodaira fibrations. In our joint paper with Rollenske

CR
[CatRol09] we gave

examples of Kodaira fibred surfaces which are rigid, and we also described
the irreducible connected components of the moduli space corresponding to
the subclass of those surfaces which admit two different Kodaira fibrations.

Question 130. Are Kodaira fibred surfaces weakly * rigid?

Let us explain why one can ask this question: a Kodaira fibration f :
S → B yields a holomorphic map ϕ : B → Mg. The unramified covering
B′ associated to ker(ρ), ρ : π1(B)→Mapg admits then a holomorphic map
ϕ′ : B′ → Tg which lifts ϕ. If Mg were a classifying space the homomor-
phism ρ would determine the homotopy class of ϕ. A generalisation of the
theorems of Eells and Samson and of Hartmann would then show that in
each class there is a unique harmonic representative, thus proving that, fixed
the complex structure on B, there is a unique holomorphic representative,
if any. This might help to describe the locus thus obtained in Tb (the set of
maps ϕ′ : B′ → Tg which are ρ-equivariant).

But indeed, our knowledge of Kodaira fibrations is still scanty, for instance
the following questions are still open.

Question 131. 1) Given an exact sequence 1→ πg → π → πb where g ≥ 3,
b ≥ 2, does there exist a Kodaira fibred surface S with fundamental group π
?

2) (Le Brun’s question, see
CR
[CatRol09]) : are there Kodaira fibred surfaces

with slope c2
1/c2(S) > 8/3 ?

3) Are there surfaces admitting three different Kodaira fibrations?

A brief comment on question 1) above. The given exact sequence de-
termines, via conjugation of lifts, a homomorphism ρ : πb → Out+(πg) =
Mapg. If the image G of ρ is finite, then π is the fundamental group of a
surface isogenous to a product, and the answer is positive, as we previously
explained.

Case II) : ρ is injective, hence G = Im(ρ) acts freely on Teichmüller space
Tg, and M := Tg/G is a classifying space for πb. There is a differentiable
map of a curve of genus b into M , and the question is whether one can
deform to obtain a harmonic or holomorphic map.

Case III) : ρ is not injective. This case is the most frequent one, since,
given a Kodaira fibred surface f : S → B, for each surjection F : B′ → B,
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the pull-back S′ := S ×B B′ is again a Kodaira fibration and ρ′ factors as
the composition of the surjection π1(B′)→ π1(B) with ρ : π1(B)→Mapg.

It is interesting to observe, via an elementary calculation, that the slope
K2
S/e(S) > 2 can only decrease for a branched covering B′ → B, and that

it tends to 2 if moreover the weight of the branch divisor β :=
∑

(1− 1/mi)
tends to ∞.

Similar phenomena (ker(ρ) 6= 0, and the slope decreases) occur if we
take general hypersurface sections of large degree B ⊂ M∗g in the Satake
compactification of the moduli space Mg which do neither intersect the
boundary ∂ M∗g = M∗g \Mg nor the locus of curves with automorphisms
(both have codimension at least 2).

6.9. Can we work with locally symmetric varieties? As we shall see
in the sequel, Abelian varieties and curves are simpler objects to work with,
because explicit constructions may be performed via bilinear algebra in the
former case, and via ramified coverings in the latter. For locally symmet-
ric varieties, the constructions are more difficult, hence rigidity results are
not enough to decide in concrete cases whether a given variety is locally
symmetric.

Recently, as a consequence of the theorem of Aubin and Yau on the exis-
tence of a Kähler-Einstein metric on projective varieties with ample canon-
ical divisor KX , there have been several simple explicit criteria which guar-
antee that a projective variety with ample canonical divisor KX is locally
symmetric (see

yau2
[Yau93],

V-Z
[ViZu07],

C-DS1
[C-DS13],

C-DS2
[C-DS14]).

A difficult question which remains open is the one of studying actions
of a finite group G on them, and especially of describing the G-invariant
divisors.

7. Inoue type varieties

While a couple of hundreds examples are known today of minimal sur-
faces of general type with geometric genus pg(S) := dimH0(OS(KS)) = 0
(observe that for these surfaces 1 ≤ K2

S ≤ 9), for the value K2
S = 7 there are

only two examples known (cf.
inoue
[In94] and

yifan
[CY13]), and for long time only

one family of such surfaces was known, the one constructed by Masahisa
Inoue (cf.

inoue
[In94]).

The attempt to prove that Inoue surfaces form a connected component
of the moduli space of surfaces of general type proved to be successful
(
bc-inoue
[B-C12]), and was based on a weak rigidity result: the topological type

of an Inoue surface determines an irreducible connected component of the
moduli space (a phenomenon similar to the one which was observed in sev-
eral papers, as

keumnaie
[BC09a],

burniat1
[BC09b]

coughlanchan
[ChCou10],

bc-CMP
[B-C13]).

The starting point was the calculation of the fundamental group of an
Inoue surface with pg = 0 and K2

S = 7: it sits in an extension (πg being as
usual the fundamental group of a projective curve of genus g):

1→ π5 × Z4 → π1(S)→ (Z/2Z)5 → 1.

This extension is given geometrically, i.e., stems from the observation
(
bc-inoue
[B-C12]) that an Inoue surface S admits an unramified (Z/2Z)5 - Galois

covering Ŝ which is an ample divisor in E1 × E2 × D, where E1, E2 are
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elliptic curves and D is a projective curve of genus 5; while Inoue described
Ŝ as a complete intersection of two non ample subvarieties in the product
E1 × E2 × E3 × E4 of four elliptic curves.

It turned out that the ideas needed to treat this special family of Inoue
surfaces could be put in a rather general framework, valid in all dimensions,
setting then the stage for the investigation and search for a new class of
varieties, which we proposed to call Inoue-type varieties.

Definition 132. (
bc-inoue
[B-C12]) Define a complex projective manifold X to be

an Inoue-type manifold if
(1) dim(X) ≥ 2;
(2) there is a finite group G and an unramified G-covering X̂ → X,

(hence X = X̂/G) such that
(3) X̂ is an ample divisor inside a K(Γ, 1)-projective manifold Z, (hence

by the theorems of Lefschetz, see theorem
hyperplanesection
3, π1(X̂) ∼= π1(Z) ∼= Γ)

and moreover
(4) the action of G on X̂ yields a faithful action on π1(X̂) ∼= Γ: in other

words the exact sequence

1→ Γ ∼= π1(X̂)→ π1(X)→ G→ 1

gives an injection G→ Out(Γ), defined by conjugation;
(5) the action of G on X̂ is induced by an action of G on Z.

Similarly one defines the notion of an Inoue-type variety, by requiring
the same properties for a variety X with canonical singularities.

Example 133. Indeed, the examples of Inoue, which also allow him to find
another description of the surfaces constructed by Burniat (

burniat
[Bur66]), are

based on products of curves, and the group G is there a Z/2-vector space.
In fact things can be done more algebraically (as in

bc-CMP
[B-C13]). If we take

a (Z/2)3-covering of P1 branched on 4 points, it has equations in P3:

x2
1 + x2

2 + x2
3 = 0, x2

0 − a2x
2
2 − a3x

2
3 = 0,

the group G ∼= (Z/2)3 is the group of transformations xi 7→ ±xi, the quotient
is

P1 = {y ∈ P3|y1 + y2 + y3 = 0, y0 − a2y2 − a3y3 = 0},
and the branch points are the 4 points yi = 0, i = 0, 1, 2, 3.

The group G, if we see the elliptic curve as C/(Z + Zτ), is the group of
affine transformations

[z] 7→ ±[z] +
1
2

(a+ bτ), a, b ∈ {0, 1},

with linear coefficient ±1 and translation vector a point of 2-torsion.
Algebra becomes easier than theta functions if one takes several square

(or cubic) roots: for instance 3 square roots define a curve of genus 5 in P4:

x2
1 + x2

2 + x2
3 = 0, x2

0 − a2x
2
2 − a3x

2
3 = 0, x2

4 − b2x2
2 − b3x2

3 = 0.

One can take more generally a (Z/2)n covering of P1 branched on n+1 points,
which is a curve of genus g = 2n−2(n − 3) + 1, or curves corresponding to
similar Kummer coverings ((Z/m)n coverings of P1 branched on n+1 points).
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The above definition of Inoue type manifold, although imposing a strong
restriction on X, is too general, and in order to get weak rigidity type results
it is convenient to impose restrictions on the fundamental group Γ of Z, for
instance the most interesting case is the one where Z is a product of Abelian
varieties, curves, and other locally symmetric varieties with ample canonical
bundle.

SIT Definition 134. We shall say that an Inoue-type manifold X is
(1) a special Inoue type manifold if moreover

Z = (A1 × · · · ×Ar)× (C1 × · · · × Ch)× (M1 × · · · ×Ms)

where each Ai is an Abelian variety, each Cj is a curve of genus
gj ≥ 2, and Mi is a compact quotient of an irreducible bounded
symmetric domain of dimension at least 2 by a torsion free subgroup;

(2) a classical Inoue type manifold if moreover
Z = (A1×· · ·×Ar)× (C1×· · ·×Ch) where each Ai is an Abelian

variety, each Cj is a curve of genus gj ≥ 2;
(3) a special Inoue type manifold is said to be diagonal if moreover:

(I) the action of G on X̂ is induced by a diagonal action on Z, i.e.,

(135) G ⊂
r∏
i=1

Aut(Ai)×
h∏
j=1

Aut(Cj)×
s∏
l=1

Aut(Ml)

and furthermore:
(II) the faithful action on π1(X̂) ∼= Γ, induced by conjugation by lifts

of elements of G in the exact sequence

prodFGprodFG (136) 1→ Γ = Πr
i=1(Λi)×Πh

j=1(πgj )×Πs
l=1(π1(Ml))→ π1(X)→ G→ 1

(observe that each factor Λi, resp. πgj , π1(Ml) is a normal sub-
group), satisfies the Schur property

(SP ) Hom(Vi, Vj)G = 0,∀i 6= j.

Here Vj := Λj⊗Q and, in order that the Schur property holds, it
suffices for instance to verify that for each Λi there is a subgroup
Hi of G for which Hom(Vi, Vj)Hi = 0, ∀j 6= i.

The Schur property (SP) plays an important role in order to show that an
Abelian variety with such a G-action on its fundamental group must split
as a product.

Before stating the main general result of
bc-inoue
[B-C12] we need the following

definition, which was already used in
tori
69 for the characterization of complex

tori among Kähler manifolds.

Definition 137. Let Y , Y ′ be two projective manifolds with isomorphic
fundamental groups. We identify the respective fundamental groups π1(Y ) =
π1(Y ′) = Γ. Then we say that the condition (SAME HOMOLOGY) is
satisfied for Y and Y ′ if there is an isomorphism Ψ : H∗(Y ′,Z) ∼= H∗(Y,Z)
of homology groups which is compatible with the homomorphisms

u : H∗(Y,Z)→ H∗(Γ,Z), u′ : H∗(Y ′,Z)→ H∗(Γ,Z),

i.e., Ψ satisfies u ◦Ψ = u′.
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We can now state the following

special diagonal Theorem 138. Let X be a diagonal special Inoue type manifold, and let
X ′ be a projective manifold with the same fundamental group as X, which
moreover either

(A) is homotopically equivalent to X;
or satisfies the following weaker property:

(B) let X̂ ′ be the corresponding unramified covering of X ′. Then X̂ and
X̂ ′ satisfy the condition (SAME HOMOLOGY).
Setting W := X̂ ′, we have that

(1) X ′ = W/G where W admits a generically finite morphism f : W →
Z ′, and where Z ′ is also a K(Γ, 1) projective manifold, of the form
Z ′ = (A′1 × · · · ×A′r)× (C ′1 × · · · × C ′h)× (M ′1 × · · · ×M ′s).

Moreover here M ′i is either Mi or its complex conjugate, and
the product decomposition corresponds to the product decomposition
(
prodFG
136) of the fundamental group of Z.

The image cohomology class f∗([W ]) corresponds, up to sign, to
the cohomology class of X̂.

(2) The morphism f is finite if n = dimX is odd, and it is generically
injective if

(**) the cohomology class of X̂ is indivisible, or if every strictly
submultiple cohomology class cannot be represented by an effective
G-invariant divisor on any pair (Z ′, G) homotopically equivalent to
(Z,G).

(3) f is an embedding if moreover KX′ is ample,
(*) every such divisor W is ample, and
(***) Kn

X′ = Kn
X .6

In particular, if KX′ is ample and (*), (**) and (***) hold, also X ′ is a
diagonal SIT (special Inoue type) manifold.

A similar conclusion holds under the alternative assumption that the ho-
motopy equivalence sends the canonical class of W to that of X̂: then X ′ is
the minimal resolution of a diagonal SIT (special Inoue type) variety.

Hypothesis (A) in theorem
special diagonal
138 is used to derive the conclusion that also

W := X̂ ′ admits a holomorphic map f ′ to a complex manifold Z ′ with the
same structure as Z, while hypotheses (B) and following ensure that the
morphism is birational onto its image, and the class of the image divisor
f ′(X̂ ′) corresponds to ± that of X̂ under the identification

H∗(Z ′,Z) ∼= H∗(Γ,Z) ∼= H∗(Z,Z).

Since KX′ is ample, one uses (***) to conclude that f ′ is an isomorphism
with its image.

The next question which the theorem leaves open is weak * rigidity, for
which several ingredients should come into play: the Hodge type, a fine
analysis of the structure of the action of G on Z, the problem of existence
of hypersurfaces on which G acts freely and the study of the family of such

6This last property for algebraic surfaces follows automatically from homotopy
invariance.
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invariant effective divisors, in particular whether the family has a connected
base.

We have restricted ourselves to special Inoue type manifolds in order to
be able to use the regularity results for classifying maps discussed in the
previous section (the diagonality assumption is only a simplifying assump-
tion).

Let us now sketch the proof of theorem
special diagonal
138.

Proof. of Theorem
special diagonal
138.

Step 1
The first step consists in showing that W := X̂ ′ admits a holomorphic

mapping to a manifold Z ′ of the above type Z ′ = (A′1 × · · · × A′r) × (C ′1 ×
· · ·×C ′h)× (M ′1×· · ·×M ′s), where M ′i is either Mi or its complex conjugate.

First of all, by the results of Siu and others (
siuannals
[Siu80],

siu2
[Siu81],

fibred
[Cat03b],

cime
[Cat08], Theorem 5.14) cited in section 6, W admits a holomorphic map to
a product manifold of the desired type

Z ′2 × Z ′3 = (C ′1 × · · · × C ′h)× (M ′1 × · · · ×M ′s).

Look now at the Albanese variety Alb(W ) of the Kähler manifold W ,
whose fundamental group is the quotient of the Abelianization of Γ = π1(Z)
by its torsion subgroup. Write the fundamental group of Alb(W ) as the first
homology group of A× Z2 × Z3, i.e., as

H1(Alb(W )) = Λ⊕H1(Z2,Z)⊕ (H1(Z3,Z)/Torsion),

(Alb(Z2) is the product of Jacobians J := (Jac(C1)× · · · × Jac(Ch))).
Since however, by the universal property, Alb(W ) has a holomorphic map

to
B′ := Alb(Z ′2)×Alb(Z ′3),

inducing a splitting of the lattice H1(Alb(W ),Z) = Λ⊕H1(B′,Z), it follows
that Alb(W ) splits as A′ ×B′.

Now, we want to show that the Abelian variety A′ (W is assumed to be
a projective manifold) splits as desired. This is in turn a consequence of
assumption (3) in definition

SIT
134. In fact, the group G acts on the Abelian

variety A′ as a group of biholomorphisms, hence it acts on Λ ⊗ R com-
muting with multiplication by

√
−1. Hence multiplication by

√
−1 is an

isomorphism of G representations, and then (3) implies that Λi⊗R is stable
by multiplication by

√
−1; whence Λi ⊗R generates a subtorus A′i. Finally,

A′ splits because Λ is the direct sum of the sublattices Λi. We are through
with the proof of step 1.
Step 2

Consider now the holomorphic map f : W → Z ′. We shall show that the
image W ′ := f(W ) is indeed a divisor in Z ′. For this we use the assumption
(SAME HOMOLOGY) and, in fact, the claim is an immediate consequence
of the following lemma.

cohalg Lemma 139. Assume that W is a Kähler manifold, such that

i) there is an isomorphism of fundamental groups π1(W ) = π1(X̂) = Γ,
where X̂ is a smooth ample divisor in a K(Γ, 1) complex projective
manifold Z;
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ii) there exists a holomorphic map f : W → Z ′, where Z ′ is another
K(Γ, 1) complex manifold, such that f∗ : π1(W )→ π1(Z ′) = Γ is an
isomorphism, and moreover

iii) (SAME HOMOLOGY) there is an isomorphism Ψ : H∗(W,Z) ∼=
H∗(X̂,Z) of homology groups which is compatible with the homomor-
phisms

u : H∗(X̂,Z)→ H∗(Γ,Z), u′ : H∗(W,Z)→ H∗(Γ,Z),

i.e., we have u ◦Ψ = u′.
Then f is a generically finite morphism of W into Z ′, and the cohomology
class f∗([W ]) in

H∗(Z ′,Z) = H∗(Z,Z) = H∗(Γ,Z)

corresponds to ±1 the one of X̂.

Proof of the Lemma. We can identify the homology groups of W and
X̂ under Ψ : H∗(W,Z) ∼= H∗(X̂,Z), and then the image in the homology
groups of H∗(Z ′,Z) = H∗(Z,Z) = H∗(Γ,Z) is the same.

We apply the above consideration to the fundamental classes of the ori-
ented manifolds W and X̂, which are generators of the infinite cyclic top
degree homology groups H2n(W,Z), respectively H2n(X̂,Z).

This implies a fortiori that f : W → Z ′ is generically finite: since then the
homology class f∗([W ]) (which we identify to a cohomology class by virtue
of Poincaré duality) equals the class of X̂, up to sign.

�
Step 3

We claim that f : W → Z ′ is generically 1-1 onto its image W ′.
Let d be the degree of f : W →W ′.
Then f∗([W ]) = d[W ′], hence if the class of X̂ is indivisible, then obviously
d = 1.

Otherwise, observe that the divisor W ′ is an effective G-invariant divisor
and use our assumption (**).
Step 4

Here we are going to prove that f is an embedding under the additional
hypotheses that Kn

X = Kn
X′ and that W is ample, as well as KX′ .

We established that f is birational onto its image W ′, hence it is a desin-
gularization of W ′.

We use now adjunction. We claim that, since KW is nef, there exists an
effective divisor A, called the adjunction divisor, such that

KW = f∗(KZ′ +W ′)− A.

This can be shown by taking the Stein factorization

p ◦ h : W →WN →W ′,

where WN is the normalization of W ′.
Let C be the conductor ideal Hom(p∗OWN ,OW ′) viewed as an ideal C ⊂

OWN ; then the Zariski canonical divisor of WN satisfies

KWN = p∗(KW ′)− C = p∗(KZ′ +W ′)− C
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where C is the Weil divisor associated to the conductor ideal (the equality
on the Gorenstein locus of WN is shown for instance in

bucharest
[Cat84b], then it

suffices to take the direct image from the open set to the whole of WN ).
In turn, we would have in general KW = h∗(KWN ) − B, with B not

necessarily effective; but, by Lemma 2.5 of
alessio
[Cor95], see also Lemma 3.39 of

KollarMori
[K-M], and since −B is h-nef, we conclude that B is effective. We establish
the claim by setting A := B + h∗C.

Observe that, under the isomorphism of homology groups, f∗(KZ′ +W ′)
corresponds to (KZ + X̂)|X̂ = KX̂ , in particular we have

Kn
X̂

= f∗(KZ′ +W ′)n = (KW + A)n.

If we assume that KW is ample, then (KW +A)n ≥ (KW )n, equality holding
if and only if A = 0.

Under assumption (**), it follows that

Kn
X̂

= |G|Kn
X = |G|Kn

X′ = Kn
W ,

hence A = 0. Since however KW is ample, it follows that f is an embedding.
If instead we assume that KW has the same class as f∗(KZ′ + W ′), we

conclude first that necessarily B = 0, and then we get that C = 0.
Hence W ′ is normal and has canonical singularities.

Step 5
Finally, the group G acts on W , preserving the direct summands of its

fundamental group Γ. Hence, G acts on the curve-factors, and on the locally
symmetric factors.

By assumption, moreover, it sends the summand Λi to itself, hence we
get a well defined linear action on each Abelian variety A′i, so that we have
a diagonal linear action of G on A′.

Since however the image of W generates A′, we can extend the action of
G on W to a compatible affine action on A′. It remains to show that the real
affine type of the action on A′ is uniquely determined. This will be taken
care of by the following lemma.

affine Lemma 140. Given a diagonal special Inoue type manifold, the real affine
type of the action of G on the Abelian variety A = (A1 × · · · × Ar) is
determined by the fundamental group exact sequence

1→ Γ = Πr
i=1(Λi)×Πh

j=1(πgj )×Πs
l=1(π1(Ml))→ π1(X)→ G→ 1.

Proof. Define as before Λ := Πr
i=1(Λi) = π1(A); moreover, since all the

summands in the left hand side are normal in π1(X), set

G := π1(X)/(Πh
j=1(πgj )×Πs

l=1(π1(Ml))).

Observe now that X is the quotient of its universal covering

X̃ = Cm ×
h∏
j=1

Hj ×
s∏
l=1

Dl

by its fundamental group, acting diagonally (here Hj is a copy of Poincaré’s
upper half plane,while Dl is an irreducible bounded symmetric domain of
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dimension at least two), hence we obtain that G acts on Cm as a group of
affine transformations.

Let K be the kernel of the associated homomorphism

α : G� Im(α) =: Ĝ ⊂ Aff(m,C),

and let
G1 := ker(αL : G→ GL(m,C)).

G1 is obviously Abelian, and contains Λ, and maps onto a lattice Λ′ ⊂ Ĝ.
Since Λ injects into Λ′, Λ ∩ K = 0, whence K injects into G, therefore K

is a torsion subgroup; since Λ′ is free, we obtain

G1 = Λ′ ⊕K,

and we finally get

K = Tors(G1), Ĝ = G/Tors(G1).

Since our action is diagonal, we can write Λ′ = ⊕ri=1(Λ′i), and the linear
action of the group G2 := G/K preserves the summands.

Since Ĝ ⊂ Aff(Λ′), we see that

Ĝ = (Λ′) oG′2,

where G′2 is the isomorphic image of G2 inside GL(Λ′)).
This shows that the affine group Ĝ is uniquely determined.
Finally, using the image groups G2,i of G2 inside GL(Λ′i)), we can define

uniquely groups of affine transformations of Ai which fully determine the
diagonal action of G on A (up to real affine automorphisms of each Ai).

�
�for Theorem

special diagonal
138

In order to obtain weak rigidity results, one has to use, as an invariant
for group actions on tori and Abelian varieties, the Hodge type, introduced
in definition

HodgeT
17 (see also remark

Hodgetype
18).

Remark 141. In the previous theorem special assumptions are needed in
order to guarantee that for each manifod X ′ homotopy equivalent to X the
classifying holomorphic map f : X̂ ′ → Z ′ be birational onto its image, and
indeed an embedding.

However, there is the possibility that an Inoue type variety deforms to one
for which f is a covering of finite degree. This situation should be analyzed
and the singularities of the image of f described in detail, so as to lead to
a generalization of the theory of Inoue type varieties, including ‘multiple’
Inoue type varieties (those for which f has degree at least two).

The study of moduli spaces of Inoue type varieties, and their connected
and irreducible components relies very much on the study of moduli spaces
of varieties X endowed with the action of a finite group G: and is for us a
strong motivation to pursue this line of research.

This topic will occupy a central role in the following sections, first in
general, and then in the special case of algebraic curves.
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8. Moduli spaces of surfaces and higher dimensional varieties

Teichmüller theory works out quite fine in the case of projective curves,
as well as other approaches, like Geometric Invariant Theory (see

GIT
[Mum65],

EnsMath
[Mum77a],

Giescime
[Gie83],

Giestata
[Gie82]), which provides a quasi-projective moduli space

Mg endowed with a natural compactification Mg (this is a coarse moduli
space for the so-called moduli stable projective curves: these are the re-
duced curves with at most nodes as singularities, such that their group of
automorphisms is finite).

In higher dimensions one has a fully satisfactory theory of ‘local moduli’
for compact complex manifolds or spaces, but there are difficulties with the
global theory.

So, let us start from the local theory, developed by Kodaira and Spencer,
and culminating in the results of Kuranishi and Grauert.

8.1. Kodaira-Spencer-Kuranishi theory. While describing complex struc-
tures as integrable almost complex structures (see theorem

NN
26), it is conve-

nient to view an almost complex structure as a differentiable (0, 1) - form
with values in the dual of the cotangent bundle (TY 1,0)∨.

This representation leads to the Kodaira-Spencer-Kuranishi theory of lo-
cal deformations, addressing precisely the study of the small deformations
of a complex manifold Y = (M,J0).

In this theory, complex structures correspond to closed such forms which,
by Dolbeault ’s theorem, determine a cohomology class in H1(ΘY ), where
ΘY is the sheaf of holomorphic sections of the holomorphic tangent bundle
(TY 1,0).

We shall use here unambiguously the double notation TM0,1 = TY 0,1, TM1,0 =
TY 1,0 to refer to the splitting determined by the complex structure J0.
J0 is a point in C(M), and a neighbourhood in the space of almost com-

plex structures corresponds to a distribution of subspaces which are globally
defined as graphs of an endomorphism

φ : TM0,1 → TM1,0,

called a small variation of almost complex structure, since one then
defines

TM0,1
φ := {(u, φ(u))| u ∈ TM0,1} ⊂ TM0,1 ⊕ TM1,0.

In terms of the old ∂̄ operator, the new one is simply obtained by consid-
ering

∂̄φ := ∂̄ + φ,

and the integrability condition is given by the Maurer-Cartan equation

(MC) ∂̄(φ) +
1
2

[φ, φ] = 0.

Observe that, since our original complex structure J0 corresponds to φ =
0, the derivative of the above equation at φ = 0 is simply

∂̄(φ) = 0,

hence the tangent space to the space of complex structures consists of the
space of ∂̄-closed forms of type (0, 1) and with values in the bundle TM1,0.
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One can restrict oneself (see e.g.
handbook
[Cat13]) to consider only the class of

such forms φ in the Dolbeault cohomology group

H1(ΘY ) := ker(∂̄)/Im(∂̄),

by looking at the action of the group of diffeomorphisms which are expo-
nentials of global vector fields on M .

Representing these cohomology classes by harmonic forms, the integrabil-
ity equation becomes easier to solve via the following Kuranishi equation.

Let η1, . . . , ηm ∈ H1(ΘY ) be a basis for the space of harmonic (0,1)-forms
with values in TM1,0, and set t := (t1, . . . , tm) ∈ Cm, so that t 7→

∑
i tiηi

establishes an isomorphism Cm ∼= H1(ΘY ).
Then the Kuranishi slice is obtained by associating to t the unique power

series solution of the following equation:

φ(t) =
∑
i

tiηi +
1
2
∂̄∗G[φ(t), φ(t)],

satisfying moreover φ(t) =
∑

i tiηi+ higher order terms (G denotes here the
Green operator).

The upshot is that for these forms the integrability equation simplifies
drastically; the result is summarized in the following definition.

Definition 142. The Kuranishi space B(Y ) is defined as the germ of com-
plex subspace of H1(ΘY ) defined by {t ∈ Cm| H[φ(t), φ(t)] = 0}, where H
is the harmonic projector onto the space H2(ΘY ) of harmonic forms of type
(0, 2) and with values in TM1,0.

Kuranishi space B(Y ) parametrizes the set of small variations of almost
complex structure φ(t) which are integrable. Hence over B(Y ) we have a
family of complex structures which deform the complex structure of Y .

It follows then that the Kuranishi space B(Y ) surjects onto the germ
of the Teichmüller space at the point corresponding to the given complex
structure Y = (M,J0).

It fails badly in general to be a homeomorphism (see
montecatini
[Cat88],

handbook
[Cat13]): for

instance Teichmüller space, in the case of the Hirzebruch Segre surface F2n

(blow up of the cone onto the rational normal curve of degree 2n), consists
of n + 1 points p0, p2, . . . , p2n, such that the open sets are exactly the sets
{p2i|i ≤ k}.

But a first consequence is that Teichmüller space is locally connected by
holomorphic arcs, hence the determination of the connected components
of C(M), respectively of T (M), can be done using the original definition
of deformation equivalence, given by Kodaira and Spencer in

k-s58
[K-S58] (see

definition
deformation
100).

One can define deformations not only for complex manifolds, but also for
complex spaces.

Definition 143. 1) A deformation of a compact complex space X is a
pair consisting of

1.1) a flat proper morphism π : X → T between connected complex spaces
(i.e., π∗ : OT,t → OX ,x is a flat ring extension for each x with π(x) = t)

1.2) an isomorphism ψ : X ∼= π−1(t0) := X0 of X with a fibre X0 of π.
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2.1) A small deformation is the germ π : (X , X0)→ (T, t0) of a defor-
mation.

2.2) Given a deformation π : X → T and a morphism f : T ′ → T with
f(t′0) = t0, the pull-back f∗(X ) is the fibre product X ′ := X ×T T ′ endowed
with the projection onto the second factor T ′ (then X ∼= X ′0).

3.1) A small deformation π : X → T is said to be versal or complete
if every other small deformation π : X ′ → T ′ is obtained from it via pull
back; it is said to be semi-universal if the differential of f : T ′ → T at
t′0 is uniquely determined, and universal if the morphism f is uniquely
determined.

4) Two compact complex manifolds X,Y are said to be directly defor-
mation equivalent if there are

4i) a deformation π : X → T of X with T irreducible and where all the
fibres are smooth, and

4ii) an isomorphism ψ′ : Y ∼= π−1(t1) =: X1 of Y with a fibre X1 of π.

Remark 144. The technical assumption of flatness replaces, for families of
spaces, the condition on π to be a submersion, necessary in order that the
fibres be smooth manifolds.

Let’s however come back to the case of complex manifolds, observing that
in a small deformation of a compact complex manifold one can shrink the
base T and assume that all the fibres are smooth.

We can now state the results of Kuranishi and Wavrik (
kur1
[Kur62],

kur2
[Kur65],

Wav
[Wav69]) in the language of deformation theory.

Theorem 145. (Kuranishi). Let Y be a compact complex manifold: then
I) the Kuranishi family π : (Y, Y0)→ (B(Y ), 0) of Y is semiuniversal.
II) (B(Y ), 0) is unique up to (non canonical) isomorphism, and is a germ

of analytic subspace of the vector space H1(Y,ΘY ), inverse image of the
origin under a local holomorphic map (called Kuranishi map and denoted by
k) k : H1(Y,ΘY )→ H2(Y,ΘY ) whose differential vanishes at the origin.

Moreover the quadratic term in the Taylor development of k is given by
the bilinear map H1(Y,ΘY ) × H1(Y,ΘY ) → H2(Y,ΘY ), called Schouten
bracket, which is the composition of cup product followed by Lie bracket of
vector fields.

III) The Kuranishi family is a versal deformation of Yt for t ∈ B(Y ).
IV) The Kuranishi family is universal if H0(Y,ΘY ) = 0.
V) (Wavrik) The Kuranishi family is universal if B(Y ) is reduced and

h0(Yt,ΘYt) := dim H0(Yt,ΘYt) is constant for t ∈ B(Y ) in a suitable neigh-
bourhood of 0.

The Kodaira Spencer map, defined soon below, is to be thought as the
derivative of a family of complex structures.

Definition 146. The Kodaira Spencer map of a family π : (Y, Y0)→ (T, t0)
of complex manifolds having a smooth base T is defined as follows: consider
the cotangent bundle sequence of the fibration

0→ π∗(Ω1
T )→ Ω1

Y → Ω1
Y|T → 0,

and the direct image sequence of the dual sequence of bundles,

0→ π∗(ΘY|T )→ π∗(ΘY)→ ΘT → R1π∗(ΘY|T ).
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Evaluation at the point t0 yields a map ρ of the tangent space to T at t0
into H1(Y0,ΘY0), which is the derivative of the variation of complex struc-
ture.

The Kodaira Spencer map and the implicit functions theorem allow to
determine the Kuranishi space and the Kuranishi family in many cases.

Corollary 147. Let Y be a compact complex manifold and assume that we
have a family π : (Y, Y0) → (T, t0) with smooth base T , such that Y ∼= Y0,
and such that the Kodaira Spencer map ρt0 surjects onto H1(Y,ΘY ).

Then the Kuranishi space B(Y ) is smooth and there is a submanifold
T ′ ⊂ T which maps isomorphically to B(Y ); hence the Kuranishi family is
the restriction of π to T ′.

The key point is that, by versality of the Kuranishi family, there is a
morphism f : T → B(Y ) inducing π as a pull back, and ρ is the derivative
of f : then one uses the implicit functions theorem.

This approach clearly works only if Y is unobstructed, which simply
means that B(Y ) is smooth. In general it is difficult to describe the ob-
struction map, and even calculating the quadratic term is nontrivial (see
quintics
[Hor75] for an interesting example).

Even if it is difficult to calculate the obstruction map, Kuranishi theory
gives a lower bound for the ‘number of moduli’ of Y , since it shows that B(Y )
has dimension ≥ h1(Y,ΘY )− h2(Y,ΘY ). In the case of curves H2(Y,ΘY ) =
0, hence curves are unobstructed; in the case of a surface S

dimB(S) ≥ h1(ΘS)−h2(ΘS) = −χ(ΘS)+h0(ΘS) = 10χ(OS)−2K2
S +h0(ΘS).

The above is the Enriques’ inequality (
enr
[Enr49], observe that Max Noether

postulated equality), proved by Kuranishi in all cases and also for non alge-
braic surfaces.

8.2. Kuranishi and Teichmüller. Ideally, we would like to have that Te-
ichmüller space, up to now only defined as a topological space, is indeed a
complex space, locally isomorphic to Kuranishi space.

In fact, we already remarked that there is a locally surjective continuous
map of B(Y ) to the germ T (M)Y of T (M) at the point corresponding to
the complex structure yielding Y . For curves this map is a local homeomor-
phism, and this fact provides a complex structure on Teichmüller space.

Whether this holds in general is related to the following definition.

Definition 148. A compact complex manifold Y is said to be rigidified if
Aut(Y ) ∩ Diff0(Y ) = {IdY }.

A compact complex manifold Y is said to be cohomologically rigidified if
Aut(Y ) → Aut(H∗(Y,Z)) is injective, and rationally cohomologically rigid-
ified if Aut(Y )→ Aut(H∗(Y,Q)) is injective.

In fact, it is clear that there is a universal tautological family of complex
structures parametrized by C(M) (the closed subspace C(M) of AC(M) con-
sisting of the set of complex structures on M), and with total space

UC(M) := M × C(M),

on which the group Diff+(M) naturally acts, in particular Diff0(M).
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The main observation is that Diff0(M) acts freely on C(M) if and only
if for each complex structure Y on M the group of biholomorphisms Aut(Y )
contains no nontrivial automorphism which is differentiably isotopic to the
identity. Thus, the condition of being rigidified implies that the tautologi-
cal family of complex structures descends to a universal family of complex
structures on Teichmüller space:

UT (M) := (M × C(M))/Diff0(M)→ C(M))/Diff0(M) = T (M),

on which the mapping class group acts.
Fix now a complex structure yielding a compact complex manifold Y , and

compare with the Kuranishi family

Y → B(Y ).

Now, we already remarked that there is a locally surjective continuous
map of B(Y ) to the germ T (M)Y of T (M) at the point corresponding to
the complex structure yielding Y .

The following was observed in
handbook
[Cat13].

Remark 149. If
1) the Kuranishi family is universal at any point
2) B(Y ) → T (M)Y is injective (it is then a local homeomorphism at

every point)
then Teichmüller space has a natural structure of complex space.

In many cases (for instance, complex tori) Kuranishi and Teichmüller
space coincide, in spite of the fact that the manifolds are not rigidified. For
instance we showed in

handbook
[Cat13]:

kur=teich Proposition 150. 1) The continuous map π : B(Y ) → T (M)Y is a local
homeomorphism between Kuranishi space and Teichmüller space if there is
an injective continuous map f : B(Y ) → Z, where Z is Hausdorff, which
factors through π.

2) Assume that Y is a compact Kähler manifold and that the local period
map f is injective: then π : B(Y )→ T (M)Y is a local homeomorphism.

3) In particular, this holds if Y is Kähler with trivial or torsion canonical
divisor.

Remark 151. 1) The condition of being rigidified implies the condition
H0(ΘY ) = 0 (else there is a positive dimensional Lie group of biholomorphic
self maps), and is obviously implied by the condition of being cohomologi-
cally rigidified.

2) By the cited Lefschetz’ lemma compact curves of genus g ≥ 2 are ra-
tionally cohomologically rigidified, and it is an interesting question whether
compact complex manifolds of general type are rigidified (see

cai-wenfei
[C-L13] for

recent progresses).
3) One can dispense with many assumptions, at the cost of having a

more complicated result. For instance, Meersseman shows in
meerssemann
[Meer13] that

one can take a quotient of the several Kuranishi families (using their semi-
universality), obtaining, as analogues of Teichmüller spaces, respectively
moduli spaces, an analytic Teichmüller groupoid, respectively a Riemann
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groupoid, both independent up to analytic Morita equivalence of the chosen
countable disjoint union of Kuranishi spaces. These lead to some stacks
called by the author ‘analytic Artin stack’.

8.3. Varieties with singularities. For higher dimensional varieties mod-
uli theory works better if one considers varieties with moderate singularities,
rather than smooth ones (see

Kolhand
[Kol13]), as we shall illustrate in the next sec-

tions for the case of algebraic surfaces.
The Kuranishi theory does indeed extend perfectly to all compact complex

spaces, and Kuranishi’s theorem was generalized by Grauert (see
grauert
[Gra74],

see also
sernesi
[Sern06] for the algebraic analogue).

Theorem 152. Grauert’s Kuranishi type theorem for complex spaces.
Let X be a compact complex space: then

I) there is a semiuniversal deformation π : (X , X0)→ (T, t0) of X, i.e., a
deformation such that every other small deformation π′ : (X ′, X ′0)→ (T ′, t′0)
is the pull-back of π for an appropriate morphism f : (T ′, t′0)→ (T, t0) whose
differential at t′0 is uniquely determined.

II) (T, t0) is unique up to isomorphism, and is a germ of analytic subspace
of the vector space T1 of first order deformations.

(T, t0) is the inverse image of the origin under a local holomorphic map
(called Kuranishi map and denoted by k)

k : T1 → T2

to the finite dimensional vector space T2 (called obstruction space), and
whose differential vanishes at the origin (the point corresponding to the point
t0).

If X is reduced, or if the singularities of X are local complete intersection
singularities, then T1 = Ext1(Ω1

X ,OX).
If the singularities of X are local complete intersection singularities, then

T2 = Ext2(Ω1
X ,OX) .

Indeed, the singularities which occur for the canonical models of varieties
of general type are called canonical singularities and are somehow tractable
(see

youngguide
[Reid87]); nevertheless the study of their deformations may present

highly nontrivial problems.
For this reason, we restrict now ourselves to the case of complex dimension

two, where these singularities are easier to describe.

9. Moduli spaces of surfaces of general type

9.1. Canonical models of surfaces of general type. The classification
theory of algebraic varieties proposes to classify the birational equivalence
classes of projective varieties.

Now, in the birational class of a non ruled projective surface there is, by
the theorem of Castelnuovo (see e.g.

arcata
[B-H75]), a unique (up to isomorphism)

minimal model S (concretely, minimal means that S contains no (-1)-curves,
i.e., curves E such that E ∼= P1, and with E2 = −1).

We shall assume from now on that S is a smooth minimal (projective)
surface of general type: this is equivalent (see

arcata
[B-H75]) to the two conditions:
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(*) K2
S > 0 and KS is nef, where as well known, a divisor D is said to be

nef if, for each irreducible curve C, we have D · C ≥ 0.
It is very important that, as shown by Kodaira in

kod-1
[Kod63-b], the class

of non minimal surfaces is stable by small deformation; on the other hand,
a small deformation of a minimal algebraic surface of general type is again
minimal (see prop. 5.5 of

bpv
[BPHV]). Therefore, the class of minimal algebraic

surfaces of general type is stable by deformation in the large.
Even if the canonical divisor KS is nef, it does not however need to be an

ample divisor, indeed
The canonical divisor KS of a minimal surface of general type S is ample

iff there does not exist an irreducible curve C (6= 0) on S with K ·C = 0 ⇔
there is no (-2)-curve C on S, i.e., a curve such that C ∼= P1, and C2 = −2
.

The number of (-2)-curves is bounded by the rank of the Neron Severi
lattice NS(S) ⊂ H2(S,Z)/Torsion of S (NS(S) is the image of Pic(S) =
H1(O∗S) inside H2(S,Z)/Torsion, and, by Lefschetz’ (1,1) theorem, it is
the intersection with the Hodge summand H1,1); the (-2)-curves can be
contracted by a contraction π : S → X, where X is a normal surface which
is called the canonical model of S.

The singularities of X are called Rational Double Points (also called Du
Val or Kleinian singularities), and X is a Gorenstein variety , i.e. (see
hart
[Hart77]) the dualizing sheaf ωX is invertible, and the associated Cartier
divisor KX , called again canonical divisor, is ample and such that π∗(KX) =
KS .
X is also the Projective Spectrum (set of homogeneous prime ideals) of

the canonical ring

R(S) := R(S,KS) :=
⊕
m≥0

H0(OS(mKS).

This definition generalizes to any dimension, since for a variety of general
type (one for which there is a pluricanonical map which is birational onto its
image) the canonical ring is a finitely generated graded ring, as was proven
by Birkar, Cascini, Hacon and McKernan in

bchm
[BCHM10]. And one defines a

canonical model as a Gorenstein variety with ample canonical divisor KX .
More concretely, the canonical model of a surface of general type is di-

rectly obtained as the image, for m ≥ 5, of the m-th pluricanonical map of
S (associated to the sections in H0(OS(mKS))) as shown by Bombieri in
bom
[Bom73].

Theorem 153. (Bombieri) Let S be a minimal surface of general type,
and consider the m-th pluricanonical map ϕm of S (associated to the linear
system |mKS |) for m ≥ 5, or for m = 4 when K2

S ≥ 2.
Then ϕm is a birational morphism whose image is isomorphic to the

canonical model X, embedded by its m-th pluricanonical map.

Corollary 154. (Bombieri),
arcata
[B-H75] Minimal surfaces S of general type

with given topological invariants e(S), b+(S) (here, b+(S) is the positivity
of the intersetion form on H2(S,Z), and the pair of topological invariants
is equivalent to the pair of holomorphic invariants K2

S , χ(S) := χ(OS)) are
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‘bounded’, i.e., they belong to a finite number of families having a connected
base.

In particular, for fixed Euler number and positivity e(S), b+(S) we have a
finite number of differentiable and topological types.

In fact, one can deduce from here effective upper bounds for the number of
these families, hence for the types (see

Cat-Chow
[Cat92] and

paris
[Cat94b]); see

lp
[LP14] for

recent work on lower bounds and references to other recent and less recent
results.

Results in the style of Bombieri have been recently obtained by Hacon
and Mckernan in

hm-pluric
[Hac-McK06], and from these one obtains (non explicit)

boundedness results for the varieties of general type with fixed invariants
Kn
X , χ(X) .

9.2. The Gieseker moduli space. When one deals with projective vari-
eties or projective subschemes the most natural parametrization, from the
point of view of deformation theory, is given by the Hilbert scheme, intro-
duced by Grothendieck (

groth
[Groth60]).

For instance, in the case of surfaces of general type with fixed invariants
χ(S) = a and K2

S = b, their 5-canonical models X5 are surfaces with Ra-
tional Double Points as singularities and of degree 25b in a fixed projective
space PN , where N + 1 = P5 := h0(5KS) = χ(S) + 10K2

S = a+ 10b.
The Hilbert polynomial of X5 is the polynomial

P (m) := h0(5mKS) = a+
1
2

(5m− 1)5mb.

Grothendieck (
groth
[Groth60]) showed that, given a Hilbert polynomial (see

hart
[Hart77]), there is

i) an integer d and
ii) a subscheme H = HP of the Grassmannian of codimension P (d)-

subspaces of H0(PN ,OPN (d)), called Hilbert scheme, such that
iii) H parametrizes the degree d graded pieces H0(IΣ(d)) of the homoge-

neous ideals of all the subschemes Σ ⊂ PN having the given Hilbert polyno-
mial P .

The Hilbert point of Σ is the Plücker point

ΛP (d)(r∨Σ) ∈ P(H0(PN ,OPN (d))∨)

where rΣ is the restriction homomorphism (surjective for d large)

rΣ : H0(PN ,OPN (d))→ H0(Σ,OΣ(d)).

Inside H one has the open sets

H∗ = {Σ|Σ is smooth} ⊂ H0,

where

H0 := {Σ|Σ is reduced with only rational Gorenstein singularities}.

Gieseker showed in
gieseker
[Gie77], replacing the 5-canonical embeddding by an

m-canonical embedding with much higher m, the following
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Theorem 155. (Gieseker) The moduli space of canonical models of sur-
faces of general type with invariants χ,K2 exists as a quasi-projective scheme

Mcan
χ,K2

which is called the Gieseker moduli space.

Similar theorems hold also for higher dimensional varieties, see
lastopus
[Vieh10],

and
Kolhand
[Kol13] for the most recent developments, but we do not state here the

results, which are more complicated and technical.

9.3. Components of moduli spaces and deformation equivalence.
We mentioned previously that the relation of deformation equivalence is a
good general substitute for the condition that two manifolds belong to the
same connected (resp.: irreducible) component of the moduli space.

Things get rather complicated and sometimes pathological in higher di-
mension, especially since, even for varieties of general type, there can be
three models, smooth, terminal, and canonical model, and the latter are
singular.

In the case of surfaces of general type things still work out fine (up to
a certain extent), since the main issue is to compare the deformations of
minimal models versus the ones of canonical models.

We have then the following theorem.

can=min Theorem 156. Given two minimal surfaces of general type S, S′ and their
respective canonical models X,X ′, then
S and S′ are deformation equivalent ⇔ X and X ′ are deformation equiv-

alent ⇔ X and X ′ yield two points in the same connected component of the
Gieseker moduli space.

One idea behind the proof is the observation that, in order to analyse
deformation equivalence, one may restrict oneself to the case of families
parametrized by a base T with dim(T ) = 1: since two points in a complex
space T ⊂ Cn (or in an algebraic variety) belong to the same irreducible
component of T if and only if they belong to an irreducible curve T ′ ⊂ T .
And one may further reduce to the case where T is smooth simply by taking
the normalization T 0 → Tred → T of the reduction Tred of T , and taking
the pull-back of the family to T 0.

A less trivial result which is used is the so-called simultaneous resolution
of singularities (cf.

tju
[Tju70],

brieskorn
[Briesk68-a],

brieskorn2
[Briesk68-b],

nice
[Briesk71])

simultaneous Theorem 157. (Simultaneous resolution according to Brieskorn and
Tjurina). Let T := Cτ be the basis of the semiuniversal deformation of a
Rational Double Point (X, 0). Then there exists a ramified Galois cover
T ′ → T , with T ′ smooth T ′ ∼= Cτ such that the pull-back X ′ := X ×T T ′ ad-
mits a simultaneous resolution of singularities p : S ′ → X ′ (i.e., p is bimero-
morphic and all the fibres of the composition S ′ → X ′ → T ′ are smooth and
equal, for t′0, to the minimal resolution of singularities of (X, 0).

Another important observation is that the local analytic structure of the
Gieseker moduli space is determined by the action of the group of automor-
phisms of X on the Kuranishi space of X.
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Remark 158. Let X be the canonical model of a minimal surface of general
type S with invariants χ,K2. The isomorphism class of X defines a point
[X] ∈Mcan

χ,K2 .
Then the germ of complex space (Mcan

χ,K2 , [X]) is analytically isomorphic
to the quotient B(X)/Aut(X) of the Kuranishi space of X by the finite
group Aut(X) = Aut(S).

Let S be a minimal surface of general type and let X be its canonical
model. To avoid confusion between the corresponding Kuranishi spaces, de-
note by Def(S) the Kuranishi space for S, respectively Def(X) the Kuranishi
space of X.

Burns and Wahl (
b-w
[B-W74]) explained the relation holding between Def(S)

and Def(X).

Theorem 159. (Burns - Wahl) Assume that KS is not ample and let
π : S → X be the canonical morphism.

Denote by LX the space of local deformations of the singularities of X
(Cartesian product of the corresponding Kuranishi spaces) and by LS the
space of deformations of a neighbourhood of the exceptional locus of π. Then
Def(S) is realized as the fibre product associated to the Cartesian diagram

Def(S)

��

// Def(SExc(π)) =: LS ∼= Cν ,

λ
��

Def(X) // Def(XSingX) =: LX ∼= Cν ,

where ν is the number of rational (−2)-curves in S, and λ is a Galois cover-
ing with Galois group W := ⊕ri=1Wi, the direct sum of the Weyl groups Wi

of the singular points of X (these are generated by reflections, hence yield a
smooth quotient, see

chevalley
[Chev55]).

An immediate consequence is the following

Corollary 160. (Burns - Wahl) 1) ψ : Def(S) → Def(X) is a finite
morphism, in particular, ψ is surjective.
2) If the derivative of Def(X)→ LX is not surjective (i.e., the singularities
of X cannot be independently smoothened by the first order infinitesimal
deformations of X), then Def(S) is singular.

In the next section we shall see the role played by automorphisms.

9.4. Automorphisms and canonical models. Assume that G is a group
with a faithful action on a complex manifold Y : then G acts naturally on the
sheaves associated to Ω1, hence we have a linear representation of G on the
vector spaces that are the cohomology groups of such sheaves: for instance
G acts linearly on Hq(Ωp

Y ), and also on the vector spaces H0((Ωn
Y )⊗m) =

H0(OY (mKY )), hence on the canonical ring

R(Y ) := R(Y,KY ) :=
⊕
m≥0

H0(OY (mKY )).

If Y is a variety of general type, then G acts linearly on the vector space
H0(OY (mKY )), hence linearly on the m-th pluricanonical image Ym, which
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is an algebraic variety bimeromorphic to Y . Hence G is isomorphic to a
subgroup of the algebraic group Aut(Ym). Matsumura (

matsumura
[Mats63]) used the

structure theorem for linear algebraic groups (Aut(Ym) would contain a non
trivial Cartan subgroup (hence C or C∗)) to show that, if G were infinite, Y
would be uniruled, a contradiction. Hence we have the (already mentioned)
theorem:

Theorem 161. (Matsumura) The automorphism group of a variety Y of
general type is finite.

The above considerations apply now to the m-th pluricanonical image X
of a variety Y of general type.

I.e., we have an embedded variety X ⊂ P(V ) and a linear representation
of a finite group G on the vector space V , such that X is G-invariant (for
Y of general type one has V := Vm := H0(OY (mKY ))).

Now, since we work over C, the vector space V splits uniquely, up to
permutation of the summands, as a direct sum of irreducible representations

(∗∗) Vm =
⊕

ρ∈Irr(G)

Wn(ρ)
ρ .

We come now to the basic notion of a family of G-automorphisms (this
notion shall be further explained in the next section).

Definition 162. A family of G-automorphisms is a triple

((p : X → T ), G, α)

where:
(1) (p : X → T ) is a flat family in a given category (a smooth family for

the case of minimal models of surfaces of general type)
(2) G is a (finite) group
(3) α : G × X → X yields a biregular action G → Aut(X ), which is

compatible with the projection p and with the trivial action of G on
the base T (i.e., p(α(g, x)) = p(x), ∀g ∈ G, x ∈ X ).

As a shorthand notation, one may also write g(x) instead of α(g, x), and
by abuse of notation say that the family of automorphisms is a deformation
of the pair (Xt, G) instead of the triple (Xt, G, αt).

The following then holds.

actiontype Proposition 163. 1) A family of automorphisms of manifolds of general
type (not necessarily minimal models) induces a family of automorphisms of
canonical models.

2) A family of automorphisms of canonical models induces, if the basis T
is connected, a constant decomposition type (∗∗) for Vm(t).

3) A family of automorphisms of smooth complex manifolds admits a dif-
ferentiable trivialization, i.e., in a neighbourhood of t0 ∈ T , a diffeomor-
phism as a family with (S0 × T, pT , α0 × IdT ); in other words, with the
trivial family for which g(y, t) = (g(y), t).

We refer to
handbook
[Cat13] for a sketchy proof, let us just observe that if we have

a continuous family of finite dimensional representations, the multiplicity
of an irreducible summand is a locally constant function on the parameter
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space T (being given by the scalar product of the respective trace functions,
it is an integer valued continuous function, hence locally constant).

Let us then consider the case of a family of canonical models of varieties
of general type: by 2) above, and shrinking the base in order to make the
addendum R(p)m = p∗(OS(mK)) free, we get an embedding of the family

(X, G) ↪→ T × (P(Vm =
⊕

ρ∈Irr(G)

Wn(ρ)
ρ ), G).

In other words, all the canonical modelsXt are contained in a fixed projective
space, where also the action of G is fixed.

Now, the canonical model Xt is left invariant by the action of G if and only
if its Hilbert point is fixed by G. Hence, we get a closed subset H0(χ,K2)G

of the Hilbert scheme H0(χ,K2)

H0(χ,K2)G := {X|ωX ∼= OX(1), Xis normal , γ(X) = X ∀γ ∈ G}.

For instance in the case of surfaces one has the following theorem (see
vieh
[Vieh95],

lastopus
[Vieh10].

Kolhand
[Kol13] and references therein for results on moduli

spaces of canonically polarized varieties in higher dimension).

can-aut=closed Theorem 164. The surfaces of general type which admit an action of a
given pluricanonical type (∗∗) i.e., with a fixed irreducible G- decomposition
of their canonical ring, form a closed subvariety (Mcan

χ,K2)G,(∗∗) of the moduli
space Mcan

χ,K2.

Remark 165. The situation for the minimal models of surfaces of general
type is different, because then the subset of the moduli space where one has
a fixed differentiable type is not closed, as showed in

burniat3
[BC10-b].

The puzzling phenomenon which we discovered in joint work with Ingrid
Bauer (

burniat2
[BC10],

burniat3
[BC10-b], on the moduli spaces of Burniat surfaces) is that

deformations of automorphisms differ for canonical and for minimal models.

More precisely, let S be a minimal surface of general type and let X be its
canonical model. Denote by Def(S), resp. Def(X), the base of the Kuranishi
family of S, resp. of X.

Assume now that we have 1 6= G ≤ Aut(S) = Aut(X).
Then we can consider the Kuranishi space of G-invariant deformations of

S, denoted by Def(S,G), and respectively consider Def(X,G); we have a
natural map Def(S,G)→ Def(X,G).

We indeed show in
burniat3
[BC10-b] that this map needs not be surjective, even

if surjectivity would seem plausible; we have the following result:

path Theorem 166. The deformations of nodal Burniat surfaces with K2
S = 4 to

extended Burniat surfaces with K2
S = 4 yield examples where Def(S, (Z/2Z)2)→

Def(X, (Z/2Z)2) is not surjective.
Moreover, whereas for the canonical model we have:

Def(X, (Z/2Z)2) = Def(X),

for the minimal models we have

Def(S, (Z/2Z)2) ( Def(S)
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and indeed the subset Def(S, (Z/2Z)2) corresponds to the locus of nodal Bur-
niat surfaces.

The moduli space of pairs (S,G) of an extended (or nodal) smooth pro-
jective and minimal Burniat surface S with K2

S = 4, taken together with its
canonical G := (Z/2Z)2-action, is disconnected; but its image in the moduli
space is a connected open set.

9.5. Kuranishi subspaces for automorphisms of a fixed type. Propo-
sition

actiontype
163 is quite useful when one analyses the deformations of a given

G-action, say on a compact complex manifold: it tells us that we have to
look at the complex structures for which the given differentiable action is
holomorphic. Hence we derive (see

montecatini
[Cat88]):

Proposition 167. Consider a fixed action of a finite group G on a compact
complex manifold X. Then we obtain a closed subset Def(X,G) of the
Kuranishi space, corresponding to deformations which preserve the given
action, and yielding a maximal family of deformations of the G-action.

The subset Def(X,G) is the intersection Def(X) ∩H1(ΘX)G.

Remark 168. 1) The proof is based on the well known and already cited
Cartan’s lemma (

cartan
[Car57]), that the action of a finite group in an analytic

neighbourhood of a fixed point can be linearized. The proof and the result
extend also to encompass compact complex spaces.

2) The above proposition is, as we shall now show in the example of projec-
tive curves, quite apt to estimate the dimension of the subspaceDef(X,G) ⊂
Def(X). For instance, ifDef(X) is smooth, then the dimension ofDef(X,G)
is just equal to dim(H1(ΘX)G).

We want to show how to calculate the tangent space to the Kuranishi
space of G-invariant deformations in some cases.

To do this, assume that X is smooth, and that there is a normal crossing
divisor D = ∪iDi such that

(1) Di is a smooth divisor
(2) the Di ’s intersect transversally
(3) there is a cyclic sugbroup Gi ⊂ G such that Di = Fix(Gi)
(4) the stabilizer on the smooth locus of Di1 ∩ Di2 ∩ · · · ∩ Dik equals

Gi1 ⊕Gi2 ⊕ · · · ⊕Gik .
Then, setting Y := X/G, Y is smooth and the branch divisor B is a

normal crossing divisor B = ∪iBi.
Define as usual the sheaf of logarithmic forms Ω1

X(logD1, . . . , logDh), as
the sheaf generated by Ω1

X , and by the logarithmic derivatives of the equa-
tions si of the divisors Di, define ΘY (− logD1, . . . ,− logDh) as the dual
sheaf (this sheaf can also be more generally defined as the sheaf of deriva-
tions carrying the ideal sheaf of D to itself). We have then the following
proposition.

Proposition 169. Let p : X → Y = X/G the quotient projection. Then
p∗(ΘX) = ΘY (− logB1, . . . ,− logBh).

In particular, H i(ΘX) = H i(ΘY (− logB1, . . . ,− logBh)).

Idea of proof
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The basic idea of the proof is the calculation one does in dimension n = 1
(and is the same one to be done at the generic point of the divisor Di, which
maps to Bi).

Namely, assume that the local quotient map is given by w = zm, the
action being given by z 7→ εz, ε being a primitive m-th root of unity. It
follows that dz 7→ εdz, and, dually, (∂/∂z) 7→ ε−1(∂/∂z).

In particular,

dlog(z) = dz/z = (1/m)dw/w and z(∂/∂z) = mw(∂/∂w)

are invariant.
Then a vector field

θ = f(z)∂/∂z = f(z)/z(z∂/∂z) = f(z)/zmw(∂/∂w)

is invariant if and only if f(z)/z is invariant, hence if and only if f(z)/z =
F (w), where F (w) is holomorphic.

�
For instance, in the case of algebraic curves, where Def(X) is smooth,

the dimension of Def(X,G) equals the dimension of

H1(ΘY (− logB1, . . . ,− logBd)) = H1(ΘY (−y1, . . . ,−yd)).

Let g′ be the genus of Y , and observe that this vector space is Serre
dual to H0(2KY + y1 + · · · + yd)). By Riemann-Roch its dimension equals
3g′ − 3 + d whenever 3g′ − 3 + d ≥ 0 (in fact H0(ΘY (−y1, . . . ,−yd)) = 0
when 2− 2g′ − d < 0).

Calculations with the above sheaves are the appropriate ones to calcu-
late the deformations of ramified coverings, see for instance

cat1
[Cat84],

Pardini
[Par91],

bidouble
[Cat99],

burniat2
[BC10], and especially

burniat3
[BC10-b].

The main problem with the group of automorphisms on minimal models
of surfaces (see

handbook
[Cat13]) is that a limit of isomorphisms need not be an

isomorphism, it can be for instance a Dehn twist on a vanishing cycle (see
also

seidelcime
[Seid08],

cime
[Cat08]).

10. Moduli spaces of symmetry marked varieties

10.1. Moduli marked varieties. We give now the definition of a symme-
try marked variety for projective varieties, but one can similarly give the
same definition for complex or Kähler manifolds; to understand the concept
of a marking, it suffices to consider a cyclic group acting on a variety X. A
marking consists in this case of the choice of a generator for the group acting
on X. The marking is very important when we have several actions of a
group G on some projective varieties, and we want to consider the diagonal
action of G on their product.

marked Definition 170. (1) A G-marked (projective) variety is a triple (X,G, η)
where X is a projective variety, G is a group and η : G → Aut(X)
is an injective homomorphism

(2) equivalently, a marked variety is a triple (X,G,α) where α : X×G→
X is a faithful action of the group G on X
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(3) Two marked varieties (X,G,α), (X ′, G, α′) are said to be isomor-
phic if there is an isomorphism f : X → X ′ transporting the action
α : X ×G→ X into the action α′ : X ′ ×G→ X ′, i.e., such that

f ◦ α = α′ ◦ (f × id)⇔ η′ = Ad(f) ◦ η, Ad(f)(φ) := fφf−1.

(4) If G is a subset of Aut(X), then the natural marked variety is the
triple (X,G, i), where i : G → Aut(X) is the inclusion map, and it
shall sometimes be denoted simply by the pair (X,G).

(5) A marked curve (D,G, η) consisting of a smooth projective curve
of genus g and a faithful action of the group G on D is said to be
a marked triangle curve of genus g if D/G ∼= P1 and the quotient
morphism p : D → D/G ∼= P1 is branched in three points.

Remark 171. Observe that:
1) we have a natural action of Aut(G) on marked varieties, namely, if

ψ ∈ Aut(G),
ψ(X,G, η) := (X,G, η ◦ ψ−1).

The corresponding equivalence class of a G-marked variety is defined to be
a G-(unmarked) variety.

2) the action of the group Inn(G) of inner automorphisms does not change
the isomorphism class of (X,G, η) since, for γ ∈ G, we may set f := η(γ),
ψ := Ad(γ), and then η ◦ ψ = Ad(f) ◦ η, since η(ψ(g)) = η(γgγ−1) =
η(γ)η(g)(η(γ)−1) = Ad(f)(η(g)).

3) In the case where G = Aut(X), we see that Out(G) acts simply tran-
sitively on the isomorphism classes of the Aut(G)-orbit of (X,G, η).

In the spirit of the above concept we have already given, in the previous
section, the definition of a family of G-automorphisms (we shall also speak
of a family of G-marked varieties).

The local deformation theory of a G-marked variety X, at least in the
case where the group G is finite, is simply given by the fixed locus Def(X)G

of the natural G -action on the Kuranishi space Def(X). As we mentioned
previously (see

path
166), one encounters difficulties, when X has dimension at

least 2, to use the Kuranishi approach for a global theory of moduli of G-
marked minimal models.

But we have a moduli space of G-marked varieties in the case of curves of
genus g ≥ 2 and in the case of canonical models of surfaces of general type,
and similarly also for canonical models in higher dimension.

In fact, one considers again a fixed linear representation space for the
group G, the associated projective action,

(P(Vm =
⊕

ρ∈Irr(G)

Wn(ρ)
ρ ), G).

and a locally closed subset of the Hilbert scheme
Hcan(χ,K2)G ⊂ H0(χ,K2)

Hcan(χ,K2)G := {X|ωX ∼= OX(1), γ(X) = X ∀γ ∈ G,

Xis normal , with canonical singularities }.
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In this case one divides the above subset by the subgroup

C(G) ⊂ GL(Vm)

which is the centralizer of G ⊂ GL(Vm).

Remark 172. 1) Assume in fact that there is an isomorphism of the
marked varieties (X,G) and (X ′, G) (here the marking is furnished by an
m-th pluricanonical embedding of X,X ′ ↪→ P(Vm), and by the fixed action
ρ : G ↪→ GL(Vm)).

Then there is an isomorphism f : X ∼= X ′ with f ◦ γ = γ ◦ f ∀γ ∈ G.
Now, f induces a linear map of Vm which we denote by the same symbol:
hence we can write the previous condition as

f ◦ γ ◦ f−1 = γ, ∀γ ∈ G⇔ f ∈ C(G).

2) By Schur’s lemma C(G) = Πρ∈Irr(G)GL(n(ρ),C) is a reductive group.
3) Observe that, since the dimension of Vm is determined by the holomor-

phic invariants of X, then there is only a finite number of possible represen-
tation types for the action of G on Vm.

4) Assume moreover that X,X ′ are isomorphic varieties: then there is
such a linear isomorphism f : Vm → Vm sending X to X ′.

The variety X ′ has therefore two G-markings, the marking η′ : G →
Aut(X ′) provided by the pluricanonical embeddding X ′ ↪→ P(Vm), and an-
other one given, in an evident notation, by Ad(f) ◦ η.

Therefore Aut(X ′) contains two subgroups, G := Im(η′), and G′ :=
Im(Ad(f) ◦ η).

If G is a full subgroup (this means that G = Aut(X ′)), then necessarily
f lies in the normalizer NG of G, but in general f will just belong to the
normalizer NX′ of Aut(X ′), and NG is just the finite index subgroup of NX′
which stabilises, via conjugation, the subgroup G.

6) In other words, we define the marked moduli space (of a fixed repre-
sentation type) as the quotient

M[G] := Hcan(χ,K2)G/CG.
Then the forgetful map from the marked moduli space to the moduli

space M[G] → M, which factors through the quotient M(G) by NG/CG,
yields finite maps M[G]→M(G)→MG.

We omit here technical details in higher dimension, which are the object
of work in progress by Binru Li for his Bayreuth Ph. D. Thesis.

Observe that the action of Out(G) does not need to respect the represen-
tation type.

Let us see now how the picture works in the case of curves: this case is
already very enlightening and intriguing.

10.2. Moduli of curves with automorphisms. There are several ‘moduli
spaces’ of curves with automorphisms. First of all, given a finite group G,
we define a subset Mg,G of the moduli space Mg of smooth curves of genus
g > 1: Mg,G is the locus of the curves that admit an effective action by the
group G. It turns out that Mg,G is a Zariski closed algebraic subset.
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In order to understand the irreducible components of Mg,G we have seen
that Teichmüller theory plays an important role: it shows the connectedness,
given an injective homomorphism ρ : G→Mapg, of the locus

Tg,ρ := Fix(ρ(G)).

Its image Mg,ρ in Mg,G is a Zariski closed irreducible subset (as observed
in

CLP2
[CLP12]). Recall that to a curve C of genus g with an action by G, we can

associate several discrete invariants that are constant under deformation.
The first is the above topological type of the G-action: it is a homomor-

phism ρ : G→Mapg, which is well-defined up to inner conjugation (induced
by different choices of an isomorphism Map(C) ∼= Mapg).

We immediately see that the locus Mg,ρ is first of all determined by the
subgroup ρ(G) and not by the marking. Moreover, this locus remains the
same not only if we change ρ modulo the action by Aut(G), but also if we
change ρ by the adjoint action by Mapg.

Definition 173. 1) The moduli space of G-marked curves of a certain topo-
logical type ρ is the quotient of the Teichmüller submanifold Tg,ρ by the cen-
tralizer subgroup Cρ(G) of the subgroup ρ(G) of the mapping class group. We
get a normal complex space which we shall denote Mg[ρ]. Mg[ρ] = Tg,ρ/Cρ(G)

is a finite covering of a Zariski closed subset of the usual moduli space (its
image Mg,ρ), therefore it is quasi-projective, by the theorem of Grauert and
Remmert.

2) Defining Mg(ρ) as the quotient of Tg,ρ by the normalizer Nρ(G) of ρ(G),
we call it the moduli space of curves with a G-action of a given topological
type. It is again a normal quasi-projective variety.

Remark 174. 1) If we consider G′ := ρ(G) as a subgroup G′ ⊂Mapg, then
we get a natural G′-marking for any C ∈ Fix(G′) = Tg,ρ.

2) As we said, Fix(G′) = Tg,ρ is independent of the chosen marking,
moreover the projection Fix(G′) = Tg,ρ → Mg,ρ factors through a finite
map Mg(ρ)→Mg,ρ.

The next question is whether Mg(ρ) maps 1-1 into the moduli space of
curves. This is not the case, as we shall easily see. Hence we give the
following definition.

Definition 175. Let G ⊂Mapg be a finite group, and let C represent a point
in Fix(G). Then we have a natural inclusion G → AC := Aut(C), and C
is a fixed point for the subgroup AC ⊂Mapg: AC is indeed the stabilizer of
the point C in Mapg, so that locally (at the point of Mg corresponding to
C) we get a complex analytic isomorphism Mg = Tg/AC .

We define HG := ∩C∈Fix(G)AC and we shall say that G is a full sub-
group if G = HG. Equivalently, HG is the largest subgroup H such that
Fix(H) = Fix(G).

This implies that HG is a full subgroup.

Remark 176. The above definition shows that the map Tg,ρ →Mg,ρ factors
through Mg(HG) := Tg,ρ/NHG

, hence we restrict our attention only to full
subgroups.
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Proposition 177. If H is a full subgroup H ⊂ Mapg, then Mg(H) is the
normalization of Mg,H .

Proof. Recall that Mg(H) = Fix(H)/NH , and that for a general curve
C ∈ Fix(H) we have AC = H.

Assume then that C = γ(C ′), and that both C,C ′ ∈ Fix(H). Then
γACγ

−1 = AC , hence for C general γ ∈ NH .
�

Next we investigate when the natural morphism Mg(H) → Mg,H is not
injective. In order that this be the case, we have already seen that we must
pick up a curve C such that H ⊂ AC 6= H. Now, let C ′ be another point of
Fix(H) which has the same image in the moduli space: this means that C ′

is in the orbit of C so there is an element γ ∈Mapg carrying C ′ to C.
By conjugation γ sends H to another subgroup H ′ of AC . We can assume

that H 6= H ′, else γ lies in the normalizer NH and we have the same point
in Mg(H). Hence the points of Mg(H) which have the same image as C
correspond to the subset of subgroups H ′ ⊂ AC which are conjugate to H
by the action of some γ ∈Mapg.

Example 178. Consider the genus 2 curve C birational to the affine curve
with equation y2 = (x6− 1). Its canonical ring is generated by x0, x1, y and
is the quotient C[x0, x1, y]/(y2 − x6

1 + x6
0).

Its group of automorphisms is generated (as a group of projective trans-
formations) by a(x0, x1, y) := (x0, εx1, y) where ε is a primitive sixth root of
1, and by b(x0, x1, y) := (x1, x0, iy). a has order 6, b has order 4, the square
b2 is the hyperelliptic involution h(x0, x1, y) := (x0, x1,−y).

We have
b ◦ a ◦ b−1 = a−1,

a formula which matches with the fact that the hyperelliptic involution lies
in the centre.

Taking as H the cyclic subgroup generated by b, the space Fix(H) has
dimension equal to 1 since C → C/H = P1 is branched in 4 points. The
quotient of AC = Aut(C) by b2 is the dihedral group D6, and we see that
H is conjugate to 6 different subgroups of AC .

Of course an important question in order to understand the locus in Mg of
curves with automorphisms is the determination of all the non full subgroups
G 6= HG.

For instance Cornalba (
cornalba
[Cor87]) answered this question for cyclic groups

of prime order, thereby obtaining a full determination of the irreducible
components of Sing(Mg). In fact, for g ≥ 4, the locus Sing(Mg) is the
locus of curves admitting a nontrivial automorphism, so this locus is the
locus of curves admitting a nontrivial automorphism of prime order. In this
case, as we shall see in the next subsection, the topological type is easily
determined. We omit to state Cornalba’s result in detail: it amounts in fact
to a list of all non full such subgroups of prime order. We limit ourselves to
indicate the simplest example of such a situation.

Example 179. Consider the genus g = p−1
2 curve C, birational to the affine

curve with equation zp = (x2−1), where p is an odd prime number. Letting
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H be the cyclic group generated by the automorphisms (x, z) 7→ (x, εz),
where ε is a primitive p-th root of unity, we see that the quotient morphism
C → C/H ∼= P1 corresponds to the inclusion of fields C(x) ↪→ C(C). The
quotient map is branched on the three points x = 1,−1,∞, so that Fix(H)
consists of just a point (the above curve C).

An easy inspection of the above equation shows that the curve C is hy-
perelliptic, with involution h : (x, z) 7→ (−x, z) which is hyperelliptic since
C(C)h = C(z). In this case the locus Fix(H) is contained in the hyperellip-
tic locus, and therefore it is not an irreducible component of Sing(Mg).

10.3. Numerical and homological invariants of group actions on
curves. As already mentioned, given an effective action of a finite group G
on C, we set C ′ := C/G, g′ := g(C ′), and we have the quotient morphism
p : C → C/G =: C ′, a G-cover.

The geometry of p encodes several numerical invariants that are constant
on Mg,ρ(G): first of all the genus g′ of C ′, then the number d of branch
points y1, . . . , yd ∈ C ′.

We call the set B = {y1, . . . , yd} the branch locus, and for each yi we
denote by mi the multiplicity of yi (the greatest number dividing the divisor
p−1(yi)). We choose an ordering of B such that m1 ≤ · · · ≤ md.

These numerical invariants g′, d,m1 ≤ · · · ≤ md form the so-called pri-
mary numerical type.
p : C → C ′ is determined (Riemann’s existence theorem) by the mon-

odromy, a surjective homomorphism:

µ : π1(C ′ \B)→ G .

We have:

π1(C ′ \B) ∼= Πg′,d := 〈γ1, . . . , γd, α1, β1, . . . , αg′ , βg′ |
d∏
i=1

γi

g′∏
j=1

[αj , βj ] = 1〉.

We set then ci := µ(γi), aj := µ(αj), bj := µ(βj), thus obtaining a
Hurwitz generating vector, i.e. a vector

v := (c1, . . . , cd, a1, b1, . . . , ag′ , bg′) ∈ Gd+2g′

s.t.
• G is generated by the entries c1, . . . , cd, a1, b1, . . . , ag′ , bg′ ,
• ci 6= 1G, ∀i, and
•
∏d
i=1 ci

∏g′

j=1[aj , bj ] = 1.
We see that the monodromy µ is completely equivalent, once an isomor-

phism π1(C ′ \ B) ∼= Πg′,d is chosen, to the datum of a Hurwitz generating
vector (we also call the sequence c1, . . . , cd, a1, b1, . . . , ag′ , bg′ of the vector’s
coordinates a Hurwitz generating system).

A second numerical invariant of these components of Mg(G) is obtained
from the monodromy µ : π1(C ′ \ {y1, . . . , yd}) → G of the restriction of p
to p−1(C ′ \ {y1, . . . , yd}), and is called the ν-type or Nielsen function of the
covering.

The Nielsen function ν is a function defined on the set of conjugacy classes
in G which, for each conjugacy class C in G, counts the number ν(C) of
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local monodromies c1, . . . , cd which belong to C (observe that the numbers
m1 ≤ · · · ≤ md are just the orders of the local monodromies).

Observe in fact that the local monodromies are well defined only up to
conjugation in the group π1(C ′ \ {y1, . . . , yd}).

We have already observed that the irreducible closed algebraic setsMg,ρ(G)
depend only upon what we call the ‘unmarked topological type’, which is
defined as the conjugacy class of the subgroup ρ(G) inside Mapg. This con-
cept remains however still mysterious, due to the complicated nature of the
group Mapg. Therefore one tries to use more geometry to get a grasp on
the topological type.

The following is immediate by Riemann’s existence theorem and the irre-
ducibility of the moduli space Mg′,d of d-pointed curves of genus g′. Given
g′ and d, the unmarked topological types whose primary numerical type is
of the form g′, d,m1, . . . ,md are in bijection with the quotient of the set of
the corresponding monodromies µ modulo the actions by Aut(G) and by
Map(g′, d).
Here Map(g′, d) is the full mapping class group of genus g′ and d unordered
points.

Thus Riemann’s existence theorem shows that the components of the
moduli space

M(G) := ∪gMg(G)
with numerical invariants g′, d correspond to the following quotient set.

Definition 180.

A(g′, d,G) := Epi(Πg′,d, G)/Mapg′,d ×Aut(G) .

Thus a first step toward the general problem consists in finding a fine
invariant that distinguishes these orbits.

In the paper
CLP2
[CLP12] we introduced a new homological invariant ε̂ for

G-actions on smooth curves (and showed that, in the case where G is the
dihedral group Dn of order 2n, ε̂ is a fine invariant since it distinguishes the
different unmarked topological types).

This invariant generalizes the classical homological invariant in the un-
ramified case.

Definition 181. Let p : C → C/G =: C ′ be unramified, so that d = 0 and
we have a monodromy µ : π1(C ′)→ G.

Since C ′ is a classifying space for the group πg′, we obtain a continuous
map

m : C ′ → BG, π1(m) = µ.

Moreover, H2(C ′,Z) has a natural generator [C ′], the fundamental class
of C ′ determined by the orientation induced by the complex structure of C ′.

The homological invariant of the G-marked action is then defined as:

ε := H2(m)([C ′]) ∈ H2(BG,Z) = H2(G,Z).
If we forget the marking we have to take ε as an element in H2(G,Z)/Aut(G).

Proposition 182. Assume that a finite group G has a fixed point free action
on a curve of genus g ≥ 3.
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Let p : C → C/G =: C ′ be the quotient map and pick an isomorphism
π1(C ′) ∼= πg′. Let µ : πg′ → G be the surjection corresponding to the mon-
odromy of p, and denote by ai := µ(αi), bj := µ(βj), i, j = 1, . . . , g′.

Assume that we have a realization G = F/R of the group G as the quotient
of a free group F , and that âi, b̂j are lifts of ai, bj to F .

Then the homological invariant ε of the covering is the image of

ε′ =
g′∏
1

[âi, b̂i] ∈ [F, F ] ∩R

into H2(G,Z) = ([F, F ] ∩R)/[F,R].

Proof. C ′ is obtained attaching a 2-cell D to a bouquet of circles, with
boundary ∂D mapping to

∏g′

1 [αi, βi].
Similarly the 2-skeleton BG2 of BG is obtained from a bouquet of circles,

with fundamental group ∼= F , attaching 2-cells according to the relations in
R. Since µ is well defined, the relation

∏g′

1 [âi, b̂i] is a product of elements
of R. In this way m is defined on D, and the image of the fundamental
class of C ′ is the image of D, which is a sum of 2-cells whose boundary is
exactly the loop ε′. If we write ε as a sum of 2-cells, we get an element
in H2(BG2, BG1,Z): but since ε is a product of commutators, the bound-
ary of the corresponding 2-chain is indeed zero, so we get an element in
H2(BG,Z) = H2(G,Z).

�

10.4. The refined homology invariant in the ramified case. Assume
now that p : C → C/G is ramified. Then we define H to be the minimal
normal subgroup of G generated by the local monodromies c1, . . . , cd ⇔ H is
the (normal) subgroup generated by the transformations γ ∈ G which have
some fixed point.

We have therefore a factorization of p

C → C ′′ := C/H → C ′ := C/G

where C ′′ → C ′ is an unramified G/H-cover, and where C → C ′′ is totally
ramified.

The refined homology invariant includes and extends two invariants that
have been studied in the literature, and were already mentioned: the ν-type
(or Nielsen type) of the cover (also called shape in

FV
[FV91]) and the class

in the second homology group H2(G/H,Z) corresponding to the unramified
cover p′ : C ′′ = C/H → C ′.

The construction of the invariant ε̂ is similar in spirit to the procedure
used in the unramified case. But we achieve a little less in the ‘branched’
case of a non- free action. In this case we are only able to associate, to
two given actions with the same ν-type, an invariant in a quotient group of
H2(G,Z) which is the ‘difference’ of the respective ε̂- invariants. Here is the
way we do it.

Let Σ be the Riemann surface (with boundary) obtained from C ′ after
removing open discs ∆i around each of the branch points.
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Take generators γ1, . . . , γd formed by a simple path going from the base
point y0 to a point zi on the circle bounding the open discs ∆i, and by the
circle ∂∆i.

Fix then a CW-decomposition of Σ as follows. The 0-skeleton Σ0 consists
of the point y0 and of the points zi, i = 1, . . . , d. The 1-skeleton Σ1 is given
by the geometric basis α1, . . . , βg′ , γ1, . . . , γd and the 2-skeleton Σ2 consists
of one cell.

The restriction pΣ of p : C → C ′ to p−1(Σ) is an unramified G-covering of
Σ and hence corresponds to a continuous map BpΣ : Σ→ BG, well defined
up to homotopy. Let Bp1 : Σ → BG be a cellular approximation of BpΣ.
Since Bp1 can be regarded as a map of pairs Bp1 : (Σ, ∂Σ) → (BG,BG1),
the push-forward of the fundamental (orientation) class [Σ, ∂Σ] gives an
element

Bp1∗[Σ, ∂Σ] ∈ H2(BG,BG1) =
R

[F,R]
.

This element depends on the chosen cellular approximation Bp1 of BpΣ,
but its image in a quotient group which we denote KΓ does not depend
on the chosen cellular approximation, as shown in

CLP3
[CLP13]. The main idea

to define this quotient group is that a homotopy between two 1-cellular
approximations can also be made cellular, hence the difference in relative
homology is the sum of boundaries of cylinders; and if we have a cylinder C
with upper circle a, lower circle c (with the same orientation), and meridian
b, then the boundary of the corresponding 2-cell is

∂C = abc−1b−1.

Definition 183. 1) For any finite group G, let F be the free group generated
by the elements of G and let R E F be the subgroup of relations, that is
G = F/R.

Denote by ĝ ∈ F the generator corresponding to g ∈ G.
For any Γ ⊂ G, union of non trivial conjugacy classes, let GΓ be the

quotient group of F by the minimal normal subgroup RΓ generated by [F,R]
and by the elements âb̂ĉ−1b̂−1 ∈ F , for any a, c ∈ Γ, b ∈ G, such that
b−1ab = c.

2) Define instead

KΓ = R/RΓ ⊂ GΓ = F/RΓ,

a central subgroup of GΓ. We have thus a central extension

1→ KΓ → GΓ → G→ 1.

3) Define

H2,Γ(G) = ker
(
GΓ → G×GabΓ

)
.

Notice that

H2(G,Z) ∼=
R ∩ [F, F ]

[F,R]
∼= ker

(
F

[F,R]
→ G×Gab∅

)
.

Remark 184. In particular, when Γ = ∅, H2,Γ(G) ∼= H2(G,Z).
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By
CLP2
[CLP12, Lemma 3.12] we have that the morphism

R ∩ [F, F ]→ R

RΓ
, r 7→ rRΓ

induces a surjective group homomorphism

H2(G,Z)→ H2,Γ(G).

Now, to a given G-cover p : C → C ′ we associate the set Γ of the local
monodromies, i.e., of the elements of G which can be geometrically described
as those which i) stabilize some point x of C and ii) act on the tangent space
at x by a rotation of angle 2π

m where m is the order of the stabilizer at x.
In terms of the notation we have introduced earlier Γ = Γv is simply the

union of the conjugacy classes of the ci’s.

Definition 185. The tautological lift v̂ of v is the vector:

(ĉ1, . . . , ĉd; â1, b̂1, . . . , âg′ , b̂g′).

Finally, define ε(v) as the class in KΓ of

d∏
1

ĉj ·
g′∏
1

[âi, b̂i] .

It turns out that the image of ε(v) in (KΓ) /Inn(G) is invariant under the
action of Map(g′, d), as shown in

CLP2
[CLP12].

Moreover the ν-type of a Hurwitz monodromy vector v can be deduced
from ε(v), as it is essentially the image of ε(v) in the abelianized group GabΓ .

Proposition 186. Let v be a Hurwitz generating system and let Γv ⊂ G be
the union of the conjugacy classes of the cj ’s , j ≤ d. The abelianization
GabΓv

of GΓv can be described as follows:

GabΓv
∼= (

⊕
C⊂Γv

Z〈C〉)⊕ (
⊕

g∈G\Γv

Z〈g〉 ),

where C denotes a conjugacy class of G.
Moreover the Nielsen function ν(v) coincides with the vector whose C-

components are the corresponding components of the image of ε(v) ∈ GΓv in
GabΓv

.

10.5. Genus stabilization of components of moduli spaces of curves
with G-symmetry. In order to take into account also the automorphism
group Aut(G), one has to consider

K∪ :=
∐

Γ
KΓ ,

the disjoint union of all the KΓ’s. Now, the group Aut(G) acts on K∪ and
we get a map

ε̂ : A(g′, d,G)→ (K∪)/Aut(G)

which is induced by v 7→ ε(v).
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Next, one has to observe that the Nielsen functions of coverings have to
satisfy a necessary condition, consequence of the relation

d∏
i=1

ci

g′∏
j=1

[aj , bj ] = 1.

Definition 187. An element

ν = (nC)C ∈
⊕
C6={1}

N〈C〉

is admissible if the following equality holds in the Z-module Gab:∑
C
nC · [C] = 0

(here [C] denotes the image element of C in the abelianization Gab).

The main result of
CLP3
[CLP13] is the following ‘genus stabilization’ theorem.

genusstab Theorem 188. There is an integer h such that for g′ > h

ε̂ : A(g′, d,G)→ (K∪)/Aut(G)

induces a bijection onto the set of admissible classes of refined homology
invariants.

In particular, if g′ > h, and we have two Hurwitz generating systems
v1, v2 having the same Nielsen function, they are equivalent if and only if
the ‘difference’ ε̂(v1)(ε̂(v2))−1 ∈ H2,Γ(G) is trivial.

The above result extends a nice theorem of Livingston, Dunfield and
Thurston (

Liv
[Liv85],

DT
[Du-Th06]) in the unramifed case, where also the state-

ment is simpler.

Theorem 189. For g′ >> 0

ε̂ : A(g′, 0, G)→ H2(G,Z)/Aut(G)

is a bijection.

Remark 190. Unfortunately the integer h in theorem
genusstab
188 is not explicit.

A key concept used in the proof is the concept of genus stabilization of a
covering, which we now briefly explain.

Definition 191. Consider a group action of G on a projective curve C, and
let C → C ′ = C/G the quotient morphism, with monodromy

µ : π1(C ′ \B)→ G .

Then the first genus stabilization of the differentiable covering is defined ge-
ometrically by simply adding a handle to the curve C ′, on which the covering
is trivial.

Algebraically, given the monodromy homomorphism

π1(C ′\B) ∼= Πg′,d := 〈γ1, . . . , γd, α1, β1, . . . , αg′ , βg′ |
d∏
i=1

γi

g′∏
j=1

[αj , βj ] = 1〉 → G,
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we simply extend µ to µ1 : Πg′+1,d → G setting

µ1(αg′+1) = µ1(βg′+1) = 1G.

In terms of Hurwitz vectors and Hurwitz generating systems, we replace
the vector

v := (c1, . . . , cd, a1, b1, . . . , ag′ , bg′) ∈ Gd+2g′

by

v1 := (c1, . . . , cd, a1, b1, . . . , ag′ , bg′ , 1, 1) ∈ Gd+2g′+2.

The operation of first genus stabilization generates then an equivalence
relation among monodromies (equivalently, Hurwitz generating systems),
called stable equivalence.

The most important step in the proof, the geometric understanding of
the invariant ε ∈ H2(G,Z) was obtained by Livingstone

Liv
[Liv85].

Theorem 192. Two monodromies µ1, µ2 are stably equivalent if and only
if they have the same invariant ε ∈ H2(G,Z).

A purely algebraic proof of Livingstone’s theorem was given by Zim-
mermann in

Zimmer
[Z87], while a nice sketch of proof was given by Dunfield and

Thurston in
DT
[Du-Th06].

Idea of proof
Since one direction is clear (the map to BG is homotopically trivial on

the handle that one adds to C ′), one has to show that two coverings are
stably equivalent if their invariant is the same.

The first idea is then to interpret second homology as bordism: given
two maps of two curves C ′1, C

′
2 → BG, they have the same invariant in

H2(G,Z) (image of the fundamental classes [C ′1], [C ′2]) if and only if there
is a 3-manifold W with boundary ∂W = C ′1 − C ′2, and a continuous map
f : W → BG which extends the two maps defined on the boundary ∂W =
C ′1 − C ′2.

Assume now that there is relative Morse function for (W,∂W ), and that
one first adds all the 1-handles (for the critical points of negativity 1) and
then all the 2-handles.

Assume that at level t we have a curve C ′t, to which we add a 1-handle.
Then the genus of C ′t grows by 1, and the monodromy is trivial on the
meridian α (image of the generator of the fundamental group of the cylinder
we are attaching).

Pick now a simple loop β′ meeting α transversally in one point with
intersection number 1: since the monodromy µ is surjective, there is a simple
loop γ disjoint from α and β′ with µ(γ) = µ(β′). Replacing β′ by β := β′γ−1,
we obtain that the monodromy is trivial on the two simple loops α and β.
A suitable neighbourhood of α∪β is then a handle that is added to C ′t, and
with trivial monodromy. This shows that at each critical value of the Morse
function we pass from one monodromy to a stably equivalent one (for the
case of a 2-handle, repeat the same argument replacing the Morse function
F by its opposite −F ).

�
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10.6. Classification results for certain concrete groups. The first re-
sult in this direction was obtained by Nielsen (

nielsen
[Nielsen]) who proved that ν

determines ρ if G is cyclic (in fact in this case H2(G,Z) = 0!).
In the cyclic case the Nielsen function for G = Z/n is simply a function

ν : (Z/n) \ {0} → N, and admissibility here simply means that∑
i

i · ν(i) ≡ 0 (mod n).

The class of ν is just the equivalence class for the equivalence relation
ν(i) ∼ νr(i), ∀r ∈ (Z/n)∗, where νr(i) := ν(ri), ∀i ∈ (Z/n).

From the refined Nielsen realization theorem of
isogenous
[Cat00] (

refinedNR
31) it follows

that the components of Mg(Z/n) are in bijection with the classes of Nielsen
functions (see also

singMg
[Cat12] for an elementary proof).

triple Example 193. For instance, in the case n = 3, the components of Mg(Z/3)
correspond to triples of integers g′, a, b ∈ N such that a ≡ b (mod 3), and
g − 1 = 3(g′ − 1) + a+ b (a := ν(1), b := ν(2)).

For g′ = 0 we have, if we assume a ≤ b (we can do this by changing
the generator of Z/3), b = a + 3r, r ∈ N, and 2a + 3r = g + 2, thus a ≡
−(g − 1) (mod 3), and 2a ≤ g + 2.

In the case where g′ = 0, two such components Na ( labelled by a as
above) have images which do not intersect in Mg as soon as g ≥ 5.

Otherwise we would have two Z/3-quotient morphisms p1, p2 : C → P1

and a birational map C → C ′′ ⊂ P1×P1. Then C would be the normalization
of a curve of arithmetic genus 4, so g ≤ 4.

The genus g′ and the Nielsen class (which refine the primary numerical
type), and the homological invariant h ∈ H2(G/H,Z) (here H is again the
subgroup generated by the local monodromies) determine the connected
components of Mg(G) under some restrictions: for instance when G is
abelian or when G acts freely and is the semi-direct product of two fi-
nite cyclic groups (as it follows by combining results from

isogenous
[Cat00],

singMg
[Cat12],

Edm I
[Edm82] and

edmonds2
[Edm83]).

Theorem 194. (Edmonds) ν and h ∈ H2(G/H,Z) determine ρ for G
abelian. Moreover, if G is split-metacyclic and the action is free, then h
determines ρ.

However, in general, these invariants are not enough to distinguish un-
marked topological types, as one can see already for non-free Dn-actions (see
CLP2
[CLP12]). Already for dihedral groups, one needs the refined homological
invariant ε.

Theorem 195 (
CLP2
[CLP12]). For the dihedral group G = Dn the connected

components of the moduli space Mg(Dn) are in bijection, via the map ε̂,
with the admissible classes of refined homology invariants.

Remark 196. In this case, the classification is simple: two monodromies
with the same Nielsen function differ by an element in H2,Γ(Dn), which is
a quotient of H2(Dn,Z). This last group is 0 if n is odd, and ∼= Z/2 for n
even.

More precisely: H2,Γ(Dn) = {0} if and only if
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• n is odd or
• n is even and Γ contains some reflection or
• n is even and Γ contains the non-trivial central element.

In the remaining cases, H2,Γ(Dn) = Z/2Z.

The above result completes the classification of the unmarked topological
types for G = Dn, begun in

CLP1
[CLP11]; moreover this result entails the classi-

fication of the irreducible components of the loci Mg(Dn) (see the appendix
to

CLP2
[CLP12]).
It is an interesting question: for which groupsG does the refined homology

invariant ε̂ determine the connected components of Mg(G)?
In view of Edmonds’ result in the unramified case, it is reasonable to

expect a positive answer for split metacyclic groups (work in progress by
Sascha Weigl) or for some more general metacyclic or metaabelian groups.

As mentioned in
DT
[Du-Th06], page 499, the group G = PSL(2,F13) shows

that, for g′ = 2, in the unramified case there are different components with
trivial homology invariant ε ∈ H2(G,Z): these topological types of coverings
are therefore stably equivalent but not equivalent.

10.7. Sing(Mg) II: loci of curves with automorphisms in Mg. Several
authors independently found restrictions in order that a finite subgroup H
of Mapg be a not full subgroup (Singerman,

singer
[Sing72], Ries

ries
[Ries93], and

Magaard-Shaska-Shpectorov-Völklein,
mssv
[MSSV01])

We refer to lemma 4.1 of
mssv
[MSSV01] for the proof of the following result.

MSSV Theorem 197. (MSSV) Suppose H ⊂ G ⊂ Mapg and assume Z :=
Fix(H) = Fix(G) ⊂ Tg, with H a proper subgroup of G, and let C ∈ Z.
Then

δ := dim(Z) ≤ 3.
I) if δ = 3, then H has index 2 in G, and C → C/G is covering of P1

branched on six points, P1, . . . , P6, and with branching indices all equal to 2.
Moreover the subgroup H corresponds to the unique genus two double cover
of P1 branched on the six points, P1, . . . , P6 (by Galois theory, intermediate
covers correspond to subgroups of G bijectively).

II) If δ = 2, then H has index 2 in G, and C → C/G is covering of P1

branched on five points, P1, . . . , P5, and with branching indices 2, 2, 2, 2, c5.
Moreover the subgroup H corresponds to a genus one double cover of P1

branched on four of the points P1, . . . , P4, P5 which have branching index 2.
III) If δ = 1, then there are three possibilities.
III-a) H has index 2 in G, and C → C/G is covering of P1 branched

on four points, P1, . . . , P4, with branching indices 2, 2, 2, 2d4, where d4 > 1.
Moreover the subgroup H corresponds to the unique genus one double cover
of P1 branched on the four points, P1, . . . , P4.

III-b) H has index 2 in G, and C → C/G is covering of P1 branched on
four points, P1, . . . , P4, with branching indices 2, 2, c3, c4, where c3 ≤ c4 > 2.
Moreover the subgroup H corresponds to a genus zero double cover of P1

branched on two points whose branching index equals 2.
III-c) H is normal in G, G/H ∼= (Z/2)2, moreover C → C/G is covering

of P1 branched on four points, P1, . . . , P4, with branching indices 2, 2, 2, c4,
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where c4 > 2. Moreover the subgroup H corresponds to the unique genus
zero cover of P1 with group (Z/2)2 branched on the three points P1, P2, P3

whose branching index equals 2.

The main point in the theorem above is a calculation via the Hurwitz
formula, showing that the normalizer of H in G is nontrivial; from this
follows the classification of the singular locus of Mg, due to Cornalba, and
which we do not reproduce here (see

cornalba
[Cor87], and also

singMg
[Cat12] for a slightly

different proof).

10.8. Stable curves and their automorphisms, Sing(Mg). The com-
pactification of the moduli space of curves Mg is given by the moduli space
Mg of stable curves of genus g (see

d-m
[Del-Mum69],

EnsMath
[Mum77a],

Giescime
[Gie83]).

Definition 198. A stable curve of genus g ≥ 2 is a reduced and connected
projective curve C, not necessarily irreducible, whose singularities are only
nodes, such that

1) the dualizing sheaf ωC has degree 2g − 2
2) its group of automorphisms Aut(C) is finite (equivalently, each smooth

irreducible component D ⊂ C of genus zero intersects C \ D in at least 3
points).

Again the Kuranishi family Def(C) of a stable curve is smooth of dimen-
sion 3g − 3, and the locus of stable curves which admit a given G-action
forms a smooth submanifold of Def(C).

Hence again the singular locus of Mg corresponds to loci of curves with
automorphisms which do not form a divisor.

Example 199. We say that C has an elliptic tail if we can write C = C1∪E,
where E is a smooth curve of genus 1 intersecting C1 in only one point P .

In this case C has always an automorphism γ of order 2: γ is the identity
on C1, and, if we choose P as the origin of the elliptic curve (E,P ), γ is
simply multiplication by −1.

An easy calculation shows that such curves with an elliptic tail form a
divisor inside Mg.

We refer to
singMg
[Cat12] (the second part) for the explicit determination of

the loci of stable curves admitting an action by a cyclic group of prime
order, especially those contained in the boundary ∂Mg. From this follows
the description of the singular locus Sing(Mg), which we do not reproduce
here.

An interesting question is to describe similar loci also for other groups.
As mentioned, there are irreducible loci which are contained in the bound-

ary, while other ones are the closures of irreducible loci in Mg. But it is
possible that some loci which are disjoint in Mg have closures which meet
in Mg.

We end this section with an explicit example, due to Antonio F. Costa,
Milagros Izquierdo, and Hugo Parlier (cf.

CMP
[C-MI-P-13 ]), but we give a

different proof. We refer to the notation of example
triple
193 in the following

theorem.
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Theorem 200. The strata Na and N3+a of Mg(Z/3) fulfill:
i) Na ∩N3+a = ∅
ii) Na ∩N3+a 6= ∅ in Mg.

Proof. By the fact that inside Kuranishi space the locus of curves with
a given action of a group G is a smooth manifold, hence locally irreducible,
one sees right away that these strata must intersect in a point corresponding
to a curve with at least two different automorphisms of order 3. A natural
choice is to take a stable curve with an action of (Z/3)2.

The simplest choice is to take first the Fermat cubic

F := {(x0, x1, x2)|x3
0 + x3

1 + x3
2 = 0}

with the action of (u, v) ∈ (Z/3)2

(x0, x1, x2) 7→ (x0, ε
ux1, ε

vx2).

We let then C be a (Z/3)-covering of the projective line, of genus g − 3
and with ν(1) = a. Denote by ψ the covering automorphism and take a
point p ∈ C which is not a ramification point: then glue the three points
ψv(p), v ∈ Z/3, with the three points (1, 0,−εv). In this way we get a stable
curve D of genus g, and with an action of (Z/3)2.

We have two actions of (Z/3) on D, the first induced by the action of
(0, 1) on F and of ψ on C, and the second induced by the action of (1, 1) on
F and ψ on C (it is immediate to observe that the glueing is respected by
the action).

Now, for the first action of the generator 1̄ ∈ (Z/3) on F , the fixed points
are the points x2 = 0, with local coordinate t = x2

x0
, such that t 7→ εt,

while for the second action the fixed points are the points x0 = 0, with local
coordinate t = x0

x1
, such that t 7→ ε2t.

Hence the same curve has two automorphisms of order 3, the first with
ν(1) = a+ 3, the second with ν(1) = a. As easily shown (cf.

singMg
[Cat12]), since,

for any of these two actions of (Z/3), the nodes are not fixed, then there
exists a smoothing for both actions of (Z/3) on the curve D. This shows
that the strata Na and Na+3 have D in their closure.

�

10.9. Branch stabilization and relation with other approaches. When
g′ = 0 our GΓ is related to the group Ĝ defined in

FV
[FV91] (Appendix), where

the authors give a proof of a theorem by Conway and Parker. Roughly speak-
ing the theorem says that: if the Schur multiplier M(G) (which is isomorphic
to H2(G,Z)) is generated by commutators, then the ν-type is a fine stable
invariant, when g′ = 0.

Theorem 201. (Conway -Parker, loc.cit.) In the case g′ = 0, let G =
F/R where F is free, and assume that H2(G,Z) ∼= [F,F ]∩R

[F,R] is generated by
commutators. Then there is an integer N such that if the numerical function
ν takes values ≥ N , then there is only one equivalence class with the given
numerical function ν.

Michael Lönne, Fabio Perroni and myself have been able to extend this
result in the following way:
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Theorem 202. Assume that g′ = 0, or more generally that the union Γ of
nontrivial conjugacy classes of G generates G.

Then there exists an integer N , depending on Γ, such that if two Hurwitz
generating systems v, w satisfy ν(v) ≥ NχΓ, ν(w) ≥ NχΓ, where χΓ is the
characteristic function of the set of conjugacy classes corresponding to Γ,
the Nielsen functions ν(v) and ν(w) are equivalent ⇔ v is equivalent to w
and they yield the same point in A(g′, d).

It is still an open question how to extend the previous result without the
condition that Γ generates G.

Similar results have been obtained by Viktor Kulikov and Slava Khar-
lamov (

k-k2
[KK13]), who use geometric arguments for the construction of semi-

groups similar to the ones constructed by Fried and Völklein, while a purely
algebraic construction of a group similar to our group KΓ can be found in
work of Moravec on unramified Brauer groups (

moravec
[Mor12]).

10.10. Miller’s description of the second homology of a group and
developments. Clair Miller found (

miller
[Mil52]) another nice description of the

second homology group H2(G,Z), as follows.

Definition 203. Let 〈G,G〉 be the free group on all pairs 〈x, y〉 with x, y ∈
G.

Then there is a natural surjection of 〈G,G〉 onto the commutator subgroup
[G,G] sending 〈x, y〉 to the commutator [x, y].

Denote as in
miller
[Mil52] by Z(G) the kernel of this surjection (it might have

been better to denote it by Z(〈G,G〉)), and then denote by B(G) (it might
have been better to denote it by B(〈G,G〉)) the normal subgroup of Z(G)
normally generated by the following elements

(1) 〈x, y〉
(2) 〈x, y〉〈y, x〉
(3) 〈z, xy〉〈yx, zx〉〈x, z〉, where yx := xyx−1,
(4) 〈zx, yx〉〈x, [y, z]〉〈y, z〉.

Theorem 204. (Miller) There is a canonical isomorphism Z(G)/B(G) ∼=
H2(G,Z).

Clearly we have an exact sequence

0→ H2(G,Z) ∼= Z(G)/B(G)→ 〈G,G〉 → [G,G]→ 0
which corresponds to the previously seen

0→ H2(G,Z) = (R ∩ [F, F ])/[F,R]→ [F, F ]/[F,R]→ [G,G]→ 0.

The relations by Miller were later slightly modified by Moravec (
moravec
[Mor12])

in a more symmetric fashion as follows:
(1) 〈g, g〉 ∼ 1
(2) 〈g1g2, h〉 ∼ 〈gg12 , h

g1〉〈g1, h〉
(3) 〈g, h1h2〉 ∼ 〈g, h1〉〈gh1 , hh1

2 〉.
In the case where we consider also a finite union Γ of conjugacy classes,

Moravec defined the following group
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Definition 205. (Moravec)

G ∧Γ G = 〈G,G〉/BΓ,

where BΓ is defined by the previous relation (1), (2), (3) and by the further
relation

(4) 〈g, k〉 ∼ 1, ∀k ∈ Γ.

The definition by Moravec and the one given in
CLP3
[CLP13] are related, as

the following easy proposition shows.

Proposition 206. There is an exact sequence

0→ H2,Γ(G,Z)→ G ∧Γ G→ [G,G]→ 0.

1) Universal central extensions?
2) Moravec, Fried-Völklein, and Semigroups ?
3) Stable cohomology of a finite group ?

11. Connected components of moduli spaces and the action of
the absolute Galois group

Let X be a complex projective variety: let us quickly recall the notion of
a conjugate variety.

Remark 207. 1) φ ∈ Aut(C) acts on C[z0, . . . zn], by sending P (z) =∑n
i=0 aiz

i 7→ φ(P )(z) :=
∑n

i=0 φ(ai)zi.
2) Let X be as above a projective variety

X ⊂ PnC, X := {z|fi(z) = 0 ∀i}.
The action of φ extends coordinatewise to PnC, and carries X to another

variety, denoted Xφ, and called the conjugate variety. Since fi(z) = 0
implies φ(fi)(φ(z)) = 0, we see that

Xφ = {w|φ(fi)(w) = 0 ∀i}.
If φ is complex conjugation, then it is clear that the variety Xφ that we

obtain is diffeomorphic to X; but, in general, what happens when φ is not
continuous ?

Observe that, by the theorem of Steiniz, one has a surjection Aut(C) →
Gal(Q̄/Q), and by specialization the heart of the question concerns the
action of Gal(Q̄/Q) on varieties X defined over Q̄.

For curves, since in general the dimensions of spaces of differential forms
of a fixed degree and without poles are the same for Xφ and X, we shall
obtain a curve of the same genus, hence Xφ and X are diffeomorphic.

11.1. Galois conjugates of projective classifying spaces. General ques-
tions of which the first is answered in the positive in most concrete cases,
and the second is answered in the negative in many cases, as we shall see,
are the following.

Question 208. Assume that X is a projective K(π, 1), and assume φ ∈
Aut(C).

A) Is then the conjugate variety Xφ still a classifying space K(π′, 1)?
B) Is then π1(Xφ) ∼= π ∼= π1(X) ?
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Since φ is never continuous, there would be no reason to expect a posi-
tive answer to both questions A) and B), except that Grothendieck showed
(
sga1
[SGA1]).

Theorem 209. Conjugate varieties X,Xφ have isomorphic algebraic fun-
damental groups

π1(X)alg ∼= π1(Xφ)alg,
where π1(X)alg is the profinite completion of the topological fundamental
group π1(X)).

We recall once more that the profinite completion of a group G is the
inverse limit

Ĝ = limK�fG(G/K),
of the factor groups G/K, K being a normal subgroup of finite index in
G; and since finite index subgroups of the fundamental group correspond
to finite unramified (étale) covers, Grothendieck defined in this way the
algebraic fundamental group for varieties over other fields than the complex
numbers, and also for more general schemes.

The main point of the proof of the above theorem is that if we have
f : Y → X which is étale, also the Galois conjugate fφ : Y φ → Xφ is étale
(fφ is just defined taking the Galois conjugate of the graph of f , a subvariety
of Y ×X).

Since Galois conjugation gives an isomorphism of natural cohomology
groups, which respects the cup product, as for instance the Dolbeault coho-
mology groups Hp(Ωq

X), we obtain interesting consequences in the direction
of question A) above. Recall the following definition.

Definition 210. Two varieties X,Y are said to be isogenous if there exist
a third variety Z, and étale finite morphisms fX : Z → X, fY : Z → Y .

Remark 211. It is obvious that if X is isogenous to Y , then Xφis isogenous
to Y φ.

Theorem 212. i) If X is an Abelian variety, or isogenous to an Abelian
variety, the same holds for any Galois conjugate Xφ.

ii) If S is a Kodaira fibred surface, then any Galois conjugate Sφ is also
Kodaira fibred.

iii) If X is isogenous to a product of curves, the same holds for any Galois
conjugate Xφ.

Proof. i) X is an Abelian variety if and only it is a projective variety
and there is a morphism X ×X → X, (x, y) 7→ (x · y−1), which makes X a
group (see

abvar
[Mum70], it follows indeed that the group is commutative). This

property holds for X if and only if it holds for Xφ.
ii) The hypothesis is that there is f : S → B such that all the fibres are

smooth and not all isomorphic: obviously the same property holds, after
Galois conjugation, for fφ : Sφ → Bφ.

iii) It suffices to show that the Galois conjugate of a product of curves is a
product of curves. But since Xφ×Y φ = (X×Y )φ and the Galois conjugate
of a curve C of genus g is again a curve of the same genus g, the statement
follows.
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�
Proceeding with other projective K(π, 1)’s, the question becomes more

subtle and we have to appeal to a famous theorem by Kazhdan on arithmetic
varieties (see

Kazh70
[Kazh70],

Kazh83
[Kazh83],

milne
[Milne01],

C-DS1
[C-DS13],

C-DS2
[C-DS14],

V-Z
[ViZu07]).

Theorem 213. Assume that X is a projective manifold with KX ample,
and that the universal covering X̃ is a bounded symmetric domain.

Let τ ∈ Aut(C) be an automorphism of C.
Then the conjugate variety Xτ has universal covering X̃τ ∼= X̃.

Simpler proofs follow from recent results which we obtained together with
Antonio Di Scala based on the Aubin-Yau theorem. These results yield a
precise characterization of varieties possessing a bounded symmetric domain
as universal cover, and can be rather useful in view of the fact that our
knowledge and classification of these fundamental groups is not so explicit.

To state them in detail would require some space, hence we just mention
the simplest result (see

C-DS1
[C-DS13]).

Theorem 214. Let X be a compact complex manifold of dimension n with
KX ample.

Then the following two conditions (1) and (1’), resp. (2) and (2’) are
equivalent:

(1) X admits a slope zero tensor 0 6= ψ ∈ H0(Smn(Ω1
X)(−mKX)), (for

some positive integer m );
(1’) X ∼= Ω/Γ , where Ω is a bounded symmetric domain of tube type and

Γ is a cocompact discrete subgroup of Aut(Ω) acting freely.
(2) X admits a semi special tensor 0 6= φ ∈ H0(Sn(Ω1

X)(−KX) ⊗ η),
where η is a 2-torsion invertible sheaf, such that there is a point
p ∈ X for which the corresponding hypersurface Fp := {φp = 0} ⊂
P(TXp) is reduced.

(2’) The universal cover of X is a polydisk.
Moreover, in c‘se (1), the degrees and the multiplicities of the irreducible

factors of the polynomial ψp determine uniquely the universal covering X̃ =
Ω.

11.2. Connected components of Gieseker’s moduli space. For the
sake of simplicity we shall describe in this and the next subsection the ac-
tion of the absolute Galois group on the set of connected components of
the moduli space of surfaces of general type. We first recall the situation
concerning these components.

As we saw, all 5-canonical models of surfaces of general type with invari-
ants K2, χ occur in a big family parametrized by an open set of the Hilbert
scheme H0 parametrizing subschemes with Hilbert polynomial P (m) =
χ+ 1

2(5m− 1)5mK2, namely the open set

H0(χ,K2) := {Σ|Σ is reduced with only R.D.P.′s as singularities }.

We shall however, for the sake of brevity, talk about connected com-
ponents N of the Gieseker moduli space Ma,b even if these do not really
parametrize families of canonical models.
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We refer to
perugia
[Cat09b] for a more ample discussion of the basic ideas which

we are going to sketch here.
Ma,b has a finite number of connected components, and these parametrize

the deformation classes of surfaces of general type with numerical invariants
χ(S) = a,K2

S = b. By the classical theorem of Ehresmann (
ehre
[Ehr47]), de-

formation equivalent varieties are diffeomorphic, and moreover, via a diffeo-
morphism carrying the canonical class to the canonical class.

Hence, fixed the two numerical invariants χ(S) = a,K2
S = b, which are

determined by the topology of S (indeed, by the Betti numbers bi(S) of S
and by b+ := positivity of the intersection form on H2(S,R)), we have a
finite number of differentiable types.

For some time the following question was open: whether two surfaces
which are orientedly diffeomorphic would belong to the same connected com-
ponent of the moduli space.

I conjectured (in
katata
[Katata83]) that the answer should be negative, on the

basis of some families of simply connected surfaces of general type con-
structed in

cat1
[Cat84]: these were shown to be homeomorphic by the results

of Freedman (see
free
[Free82], and

f-q
[F-Q90]), and it was then relatively easy

to show then (
cat3
[Cat86]) that there were many connected components of the

moduli space corresponding to homeomorphic but non diffeomorphic sur-
faces. It looked like the situation should be similar even if one would fix the
diffeomorphism type.

Friedman and Morgan instead made the ‘speculation’ that the answer to
the DEF= DIFF question should be positive (1987) (see

f-m1
[F-M88]), moti-

vated by the new examples of homeomorphic but not diffeomorphic surfaces
discovered by Donaldson (see

don
[Don92] for a survey on this topic).

The question was finally answered in the negative, and in every possible
way (

man4
[Man01],

k-k
[KK02],

cat03
[Cat03],

c-w
[CW04],

bcg
[BCG05]).

Theorem 215. (Manetti ’98, Kharlamov -Kulikov 2001, C. 2001, C. - Wa-
jnryb 2004, Bauer- C. - Grunewald 2005 )

The Friedman- Morgan speculation does not hold true and the DEF =
DIFF question has a negative answer.

In my joint work with Bronislaw Wajnryb (
c-w
[CW04]) the DEF = DIFF

question was shown to have a negative answer also for simply connected
surfaces (indeed for some of the families of surfaces constructed in

cat1
[Cat84]).

I refer to
cime
[Cat08] for a rather comprehensive treatment of the above ques-

tions.

11.3. Arithmetic of moduli spaces and faithful actions of the abso-
lute Galois group. A basic remark is that all the schemes involved in the
construction of the Gieseker moduli space are defined by equations involv-
ing only Z-coefficients, since the defining equation of the Hilbert scheme
is a rank condition for a multiplication map (see for instance

green
[Green88]),

and similarly the condition ω⊗5
Σ
∼= OΣ(1) is also closed (see

abvar
[Mum70]) and

defined over Z.
It follows that the absolute Galois group Gal(Q,Q) acts on the Gieseker

moduli space Ma,b. In particular, it acts on the set of its irreducible com-
ponents, and on the set of its connected components.
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After an incomplete initial attempt in
AbsoluteGalois
[BCG07] in joint work with Ingrid

Bauer and Fritz Grunewald, we were able in
bcg2
[BCG14] to show:

faithful Theorem 216. The absolute Galois group Gal(Q̄/Q) acts faithfully on the
set of connected components of the (coarse) moduli space of minimal surfaces
of general type,

M := ∪a,b≥1Ma,b.

Another result in a similar direction had been obtained by Easton and
Vakil (

east-vak
[EastVak07]) using abelian coverings of the plane branched on union

of lines.

Theorem 217. The absolute Galois group Gal(Q̄/Q) acts faithfully on the
set of irreducible components of the (coarse) moduli space of minimal sur-
faces of general type,

M := ∪a,b≥1Ma,b.

The main ingredients for the proof of theorem
faithful
216 are the following ones.

(1) Define, for any complex number a ∈ C\{−2g, 0, 1, . . . , 2g−1}, Ca as
the hyperelliptic curve of genus g ≥ 3 which is the smooth complete
model of the affine curve of equation

w2 = (z − a)(z + 2g)Π2g−1
i=0 (z − i).

Consider then two complex numbers a, b such that a ∈ C\Q: then
Ca ∼= Cb if and only if a = b.

(2) If a ∈ Q̄, then by Belyi’s theorem (
belyi
[Belyi79]) there is a morphism

fa : Ca → P1 which is branched only on three points, 0, 1,∞.
(3) The normal closure Da of fa yields a triangle curve, i.e., a curve Da

with the action of a finite group Ga such that Da/Ga ∼= P1, and
Da → P1 is branched only on three points.

(4) Take surfaces isogenous to a product S = (Da × C2)/Ga where the
action of Ga on C2 is free. Denote by Na the union of connected
components parametrizing such surfaces.

(5) Take all the possible twists of the Ga-action on Da × C2 via an
automorphism ψ ∈ Aut(Ga) (i.e., given the action (x, y) 7→ (γx, γy),
consider all the actions of the form

(x, y) 7→ (γx, ψ(γ)y).

One observes that, for each ψ as above, we get more connected
components in Na.

(6) Find by an explicit calculation (using (4) and (5)) that the subgroup
of Gal(Q̄/Q) acting trivially on the set of connected components of
the moduli space would be a normal and abelian subgroup.

(7) Finally, this contradicts a known theorem (cf.
F-J
[F-J08]).

11.4. Change of fundamental group. Jean Pierre Serre proved in the
60’s (

serre
[Ser64]) the existence of a field automorphism φ ∈ Gal(Q̄/Q), and a

variety X defined over Q̄ such that X and the Galois conjugate variety Xφ

have non isomorphic fundamental groups.
In

bcg2
[BCG14] this phenomenon is vastly generalized (thus answering ques-

tion B) in the negative).
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fundamentalgroup Theorem 218. If σ ∈ Gal(Q̄/Q) is not in the conjugacy class of complex
conjugation, then there exists a surface isogenous to a product X such that
X and the Galois conjugate surface Xσ have non-isomorphic fundamental
groups.

Since the argument for the above theorem is not constructive, let us ob-
serve that, in work in collaboration with Ingrid Bauer and Fritz Grunewald
(
almeria
[BCG06],

bcg2
[BCG14]), we discovered wide classes of explicit algebraic surfaces

isogenous to a product for which the same phenomenon holds.
By the strong rigidity of locally symmetric spaces X = D/Γ whose uni-

versal covering D is an irreducible bounded symmetric domain of dimension
≥ 2, similar phenomena should also occur in this case.

12. Stabilization results for the homology of moduli spaces of
curves and Abelian varieties

We have seen that the moduli space of curves is a rational K(π, 1), since
it can be written as a quotient of Teichmüller space Tg of a closed oriented
real 2 -manifold M of genus g

Mg = Tg/Mapg, Tg := CS(M)/Diff0(M),

As a corollary, and as we saw, the rational cohomology of the moduli space
is calculated by group cohomology:

H∗(Mg,Q) ∼= H∗(Mapg,Q) .

Harer showed, using the concept of genus stabilization that we have al-
ready introduced in section 10, that these cohomology groups stabilize with
g; indeed, stabilization furnishes an inclusion of a space which is homo-
topically equivalent to Mg inside Mg+1 (alternatively, one may say that
Mapg →Mapg+1, by letting the operation be trivial on the added handle).

Theorem 219 (Harer
harer
[Har85]). Let Mapsg,r be the mapping class group

of an orientable surface F of genus g with r boundary components and s
punctures. Then, for g ≥ 3k − 1, Hk(Mapsg,r,Z) is independent of g and r
as long as r > 0, for g ≥ 3k, Hk(Mapsg,r,Q) is independent of g and r for
every r, and for g ≥ 3k + 1, Hk(Mapsg,r,Z) is independent of g and r for
every r.

The ring structure of the cohomology of the “stable mapping class group”
is described by a conjecture of Mumford (

mumshaf
[Mum83]), that has been proven

by Madsen and Weiss (
m-w
[M-W07]).

Theorem 220. (Mumford’s conjecture) The stable cohomology of them-w
moduli space of curves is a polynomial algebra

H∗(Map∞ ⊗Q) = Q[K1,K2, . . . ]

where the class Ki is the direct image (pg)∗(Ki+1) of the (i+ 1)-th power of
the relative canonical divisor of the universal family of curves.

These results paralleled earlier results of Borel (
borelcoh
[Borel74]) and Charney

and Lee (
CharneyLee
[Ch-Le83]) on the cohomology of arithmetic varieties, such as
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the moduli space of Abelian varieties and some partial compactifications
of them.

For instance, in the case of the moduli space of Abelian varieties we have
the following theorem by Borel.

Theorem 221. (Borel) The stable cohomology of the moduli space ofborel
Abelian varieties is a polynomial algebra

H∗(A∞ ⊗Q) = Q[λ1, λ3, λ5 . . . ]

where the class λi is the i-th Chern class of the universal bundle H1,0.

The theme of homology (cohomology-) stabilization is indeed a very gen-
eral one, which has been recently revived through the work of several au-
thors, also in other contexts ( see for instance

dc-sa
[DC-S99],

egh
[EGH10] ,

evw
[EVW09],

ght
[GHT13]).

It would take too long to dwell here on this topic, which would deserve a
whole survey article devoted to it.

12.1. Epilogue. There are many other interesting topics which are very
tightly related to the main theme of this article.

For instance, there is a relation between symmetric differentials and the
fundamental group (

bog-deol1
[Bog-DO11],

bog-deol
[Bog-DO13],

BKT
[BKT13],

klingler
[Kling13]).

Brunebarbe, Klingler and Totaro showed indeed in
BKT
[BKT13] that some

’linearity’ property of the fundamental group entails the existence of non-
trivial symmetric differentials.

Theorem 222. Let X be a compact Kähler manifold, and let k be any field.
Assume that there is a representation

ρ : π1(X)→ GL(r, k)

with infinite image.
Then the symmetric algebra of X is nontrivial,

⊕m≥0H
0(Sm(Ω1

X)) 6= C.

Another very interesting topic is Gromov’s h-principle, for which we refer
the reader to

Eliashberg
[E-M02], and

C-W
[C-W12]. Perhaps not only the author is tired

at this point.
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Band 20, Birkhäuser Verlag Basel, 1992 .

eyss-inv [Eyss04] Eyssidieux, Philippe, Sur la convexité holomorphe des revêtements linéaires
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Actual. Sci. Ind., 270, Hermann, Paris, 1935.

godement [God58] Godement, Roger Topologie algébrique et théorie des faisceaux. Actualités
Scientifiques et Industrielles No. 1252. Publ. Math. Univ. Strasbourg. No.
13 Hermann, Paris (1958) viii+283 pp. ; reprinted (1973).

go-mi [Go-Mi88] Goldman, William M.; Millson, John J. The deformation theory of represen-
tations of fundamental groups of compact Kähler manifolds. Inst. Hautes
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Boston, Mass. (1983), 591-630.

Kato [Kato90] Kato, Masahide, A non Kähler structure on an S2-bundle over a ruled sur-
face, Unpublished manuscript, 15 pages, May 1992.

Katz-Ram [KR98] Katzarkov, L.; Ramachandran, M. On the universal coverings of algebraic

surfaces. Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 4, 525–535.
kawamata [Kaw92] Y. Kawamata, Unobstructed deformations. A remark on a paper of Z. Ran:

”Deformations of manifolds with torsion or negative canonical bundle” J.
Algebraic Geom. 1 , no. 2, (1992) 183–190.

Kazh70 [Kazh70] Kazhdan D.: Arithmetic varieties and their fields of quasi-definition.,
Actes du Congrès International des Mathematiciens (Nice, 1970), Tome
2, pp. 321 –325. Gauthier-Villars, Paris, (1971).

Kazh83 [Kazh83] Kazhdan, David On arithmetic varieties. II. Israel J. Math. 44 (1983), no.
2, 139–159.

kerckhoff [Ker83] Kerckhoff, Steven P. The Nielsen realization problem. Ann. of Math. (2) 117
, no. 2, 235–265 (1983).

keum [Ke88] Keum, Y.H. Some new surfaces of general type with pg = 0. Unpublished
manuscript (1988).



144 F. CATANESE

k-k [KK02] V. M. Kharlamov, V.S. Kulikov, On real structures of real surfaces. Izv.
Ross. Akad. Nauk Ser. Mat. 66, no. 1, 133–152 (2002); translation in Izv.
Math. 66, no. 1, 133–150 (2002)

k-k2 [KK13] Kulikov, Vik. S.; Kharlamov, V. M. The semigroups of coverings. Izv. Ross.
Akad. Nauk Ser. Mat. 77 (2013), no. 3, 163–198; translation in Izv. Math.
77 (2013), no. 3, 594–626.

klingler [Kling13] Klingler, Bruno Symmetric differentials, Kähler groups and ball quotients,
Invent. Math. 192 (2013), no. 2, 257–286.

Kobayashi [Koba58] Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc.
92 (1959) 267-290.

Koba80 [Koba80] Kobayashi, S.: First Chern class and holomorphic tensor fields. Nagoya
Math. J. 77 (1980), 5 - 11.

Koba80-2 [Koba80-2] Kobayashi, S.: The first Chern class and holomorphic symmetric tensor
fields., J. Math. Soc. Japan 32 (1980), no. 2, 325-329.

KobNom [KobNom63] Kobayashi, S. and Nomizu, K.: Foundations of differential geometry. Vol
I. Interscience Publishers, a division of John Wiley & Sons, New York-Lond
on (1963) xi+329 pp.

Kodaira-Morrow [Kod-Mor72] Kodaira,K. and Morrow, J. : Complex manifolds. Holt, Rinehart and
Winston, Inc., New York-Montreal, Que.-London, (1971) vii+192 pp.

kodemb [Kod54] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characteri-
zation of algebraic varieties). Ann. of Math. (2) 60 (1954), 28–48.

k-s58 [K-S58] K. Kodaira, ; D. C. Spencer, On deformations of complex analytic struc-
tures. I, II, Ann. of Math. (2) 67 (1958), 328 -466.

kod1 [Kod60] K. Kodaira, On compact complex analytic surfaces, I. , Ann. Math. 71,
111–152 (1960).

kod-1 [Kod63-b] K. Kodaira, On stability of compact submanifolds of complex manifolds,
Am. J. Math. 85(1963), 79-94 .

Kodsurf [Kod67] K. Kodaira, A certain type of irregular algebraic surfaces. J. Analyse
Math. 19 (1967), 207–215.

k-m71 [Kod-Mor71] K. Kodaira, J. Morrow, Complex manifolds. Holt, Rinehart and Winston,
Inc., New York-Montreal, Que.-London, (1971). vii+192 pp.

Kodbook [Kod86] K. Kodaira,Complex manifolds and deformation of complex structures.
Translated from the Japanese by Kazuo Akao. With an appendix by Daisuke
Fujiwara. Grundlehren der Mathematischen Wissenschaften, 283. Springer-
Verlag, New York, (1986) x+465 pp.

k-sb [K-SB88] J. Kollár and N.I. Shepherd Barron, Threefolds and deformations of surface
singularities. Inv. Math. 91 (1988) 299-338.

Kol-Shaf-art [Kol93] J. Kollár Shafarevich maps and plurigenera of algebraic varieties. Invent.
Math. 113 (1993), no. 1, 177–215.

Kollar-Shaf [Kol95] Kollár, J. : Shafarevich maps and automorphic forms. M. B. Porter
Lectures. Princeton University Press, Princeton, NJ, (1995) x+201 pp.

Kolhand [Kol13] J. Kollár Moduli of varieties of general type. Handbook of moduli. Vol. II,
131–157, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA, (2013).

KollarMori [K-M] Kollár, J., Mori, S. Birational geometry of algebraic varieties. With the
collaboration of C. H. Clemens and A. Corti. Cambridge Tracts in Mathe-
matics, 134. Cambridge University Press, Cambridge, (1998) viii+254 pp.

kotschick [Kot99] D. Kotschick, On regularly fibered complex surfaces. Proceedings of the Kir-
byfest (Berkeley, CA, 1998), 291–298 (electronic), Geom. Topol. Monogr.,
2, Geom. Topol. Publ., Coventry, (1999).

kur1 [Kur62] M. Kuranishi, On the locally complete families of complex analytic struc-
tures, Ann. Math. (2) 75 (1962), 536-577.

kur2 [Kur65] M. Kuranishi, New proof for the existence of locally complete families
of complex structures, Proc. Conf. Complex Analysis, Minneapolis 1964
(1965), 142-154.

kur3 [Kur69] M. Kuranishi, A note on families of complex structures. Global Analysis
(Papers in Honor of K. Kodaira), (1969), pp. 309-313, Princeton Univ. Press
and Univ. Tokyo Press, Tokyo.



TOPOLOGICAL METHODS FOR MODULI 145

kur4 [Kur71] M. Kuranishi, Deformations of compact complex manifolds. Séminaire de
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