
2nd Reading

June 14, 2016 15:15 WSPC/S0129-167X 133-IJM 1640001

International Journal of Mathematics
Vol. 27, No. 7 (2016) 1640001 (25 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129167X16400012

Vector bundles on curves coming from
variation of Hodge structures

Fabrizio Catanese

Lehrstuhl Mathematik VIII
Mathematisches Institut der Universität Bayreuth
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Fujita’s second theorem for Kähler fibre spaces over a curve asserts, that the direct
image V of the relative dualizing sheaf splits as the direct sum V = A ⊕ Q, where
A is ample and Q is unitary flat. We focus on our negative answer [F. Catanese and
M. Dettweiler, Answer to a question by Fujita on variation of Hodge structures, to
appear in Adv. Stud. Pure Math.] to a question by Fujita: is V semiample? We give here
an infinite series of counterexamples using hypergeometric integrals and we give a simple
argument to show that the monodromy representation is infinite. Our counterexamples
are surfaces of general type with positive index, explicitly given as abelian coverings with
group (Z/n)2 of a Del Pezzo surface Z of degree 5 (branched on the union of the lines
of Z, which form a bianticanonical divisor), and endowed with a semistable fibration
with only three singular fibres. The simplest such surfaces are the three ball quotients
considered in [I. C. Bauer and F. Catanese, A volume maximizing canonical surface in
3-space, Comment. Math. Helv. 83(1) (2008) 387–406.], fibred over a curve of genus 2,
and with fibres of genus 4. These examples are a larger class than the ones corresponding
to Shimura curves in the moduli space of Abelian varieties.

Keywords: Relative dualizing sheaf; semiampleness; monodromy; semistable fibration.

Mathematics Subject Classification 2010: 14D0, 14C30, 32G20, 33C60

0. Introduction

In this paper, we first begin recalling previous results [21, 22, 9, 10] concerning
Fujita’s first and second theorem for Kähler fibre spaces over a curve, asserting
that the direct image V of the relative dualizing sheaf splits as the direct sum
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V = A⊕Q, where A is ample and Q is unitary flat. Then, we focus on our negative
answer [9, 10] to a question posed by Fujita 30 years ago: V does not need to be
semiample.

We show here, that the two examples of [9] fits into an infinite series of counterex-
amples, again based on the use of hypergeometric integrals à la Deligne–Mostow, for
each positive number n and each way to write n as a sum of four positive integers,
and yielding a family of cyclic coverings of the line parametrized by P1.

Following Beukers and Heckman, we can show that the monodromy group of Q
is infinite without resorting to the classification by Schwarz.

Under some mild restrictions on n and the four integers (for n the restriction
boils down to the fact, that n should be coprime to six), we give a very simple
explicit description of fibred surfaces f : S → B, which are obtained from the
above family via a cyclic Z/n-base change B → P1, and which have the following
remarkable properties:

(1) The Albanese map α : S → Alb(S) has as image a curve of genus b ≥ 2, and
coincides with the fibration f : S → B;

(2) all the fibres of α are smooth, except three singular fibres which are constituted
of two smooth curves of genus b meeting transversally in one point;

(3) the surfaces S have all positive index, indeed K2
S > 2.5e(S),

(4) the direct image V = f∗(ω) of the relative dualizing sheaf splits as the direct
sum V = A ⊕ Q, where A is ample and Q is unitary flat, and Q corresponds
to an infinite monodromy representation of π1(B): hence V is not semiample
(since, by the results of [9], a unitary flat bundle is semiample, if and only if
the monodromy representation is finite).

In the previous two examples [9, 10], we had n = 7, but we used another
method to produce a base change yielding a semistable fibration; as a consequence
the degree of the base change, that we needed was much larger than seven (42 in the
easier case), and the semistable fibrations were not described with full details. The
description, we give here was motivated by a question by Fujino, who asked whether
we could give a completely explicit example of a semistable fibration satisfying
property (4).

To underline the simplicity of the present geometric construction, let us observe
that the simplest surfaces in our series correspond to writing 5 = 2 + 1 + 1 + 1, and
are therefore surfaces S fibred over a curve of genus 2, and with fibres of genus 4. It
turns out, that these surfaces are among the ball quotients which were previously
considered in [3].

The following is our main result.

Theorem 0.1. There exists an infinite series of surfaces with ample canonical
bundle, whose Albanese map is a fibration f : S → B onto a curve B of genus
b = 1

2 (n − 1), and with fibres of genus g = 2b = n − 1, where n is any integer
relatively prime with 6.
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These Albanese fibrations yield negative answers to Fujita’s question about the
semiampleness of V := f∗ωS|B, since here V := f∗ωS|B splits as a direct sum
V = A⊕Q, where A is an ample vector bundle, and Q is a unitary flat bundle with
infinite monodromy group.

The fibration f is semistable: indeed all the fibres are smooth, with the exception
of three fibres, which are the union of two smooth curves of genus b, which meet
transversally in one point.

For n = 5, we get three surfaces which are rigid, and are quotient of the unit
ball in C2 by a torsion free cocompact lattice Γ. The rank of A, respectively Q, is
in this case equal to 2.

Finally, we end surveying quite briefly relations with existing literature con-
cerning Shimura curves in the moduli space of Abelian varieties: this is the work
of several people, but especially the work of Moonen [39] is related to our easiest
examples.

1. Fujita’s Theorems and Questions on Vector Bundles on Curves
Arising from Variation of Hodge Structures

An important progress in classification theory was stimulated by a theorem of
Fujita, who showed [21], that if X is a compact Kähler manifold and f : X → B is
a fibration onto a projective curve B (i.e. f has connected fibres), then the direct
image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB))

is a nef vector bundle on B, where ‘nef’ means that each quotient bundle Q of V has
degree deg(Q) ≥ 0; sometimes the word ‘nef’ is replaced by the word ‘numerically
semipositive’.

In the note [22], Fujita announced the following quite stronger result.

Theorem 1.1 (Fujita [22]). Let f : X → B be a fibration of a compact Kähler
manifold X over a projective curve B, and consider the direct image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB)).

Then V splits as a direct sum V = A⊕Q, where A is an ample vector bundle and
Q is a unitary flat bundle.

Fujita sketched the proof, but referred to a forthcoming paper concerning the
positivity of the so-called local exponents (this paper was never written, see [2]).

Soon afterwards, using Griffihts’ [23–25] results on variation of Hodge structures,
since the fibre of V := f∗ωX|B over a point b ∈ B, such that Xb := f−1(b) is smooth
is the vector space Vb = H0(Xb,Ωn−1

Xb
), Kawamata [31, 32] improved on Fujita’s

result, solving a long standing problem and proving the subadditivity of Kodaira
dimension for such fibrations,

Kod(X) ≥ Kod(B) + Kod(F )
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(here F is a general fibre). Kawamata did this by showing the semipositivity also
for the direct image of higher powers of the relative dualizing sheaf

Wm := f∗(ω⊗m
X|B) = f∗(OX(m(KX − f∗KB))).

Kawamata also extended his result to the case, where the dimension of the
base variety B is > 1 in [31], giving later a simpler proof of semipositivity in [33].
There has been a lot of literature on the subject ever since, see the references we
cited (see [17] for the ampleness of Wm, when m ≥ 2 and when the fibration is
not birationally isotrivial, see also [20, 19, 36, 37, 41, 47, 48] and [49]). Kawamata
introduced a simple lemma, concerning the degree of line bundles on a curve, whose
metric grows at most logarithmically around a finite number of singular points,
which played a crucial role for the proof.

The missing details concerning the proof of the second theorem of Fujita, using
Kawamata’s lemma and some crucial estimates given by Zucker [47] for the growth
of the norm of sections of the L2-extension of Hodge bundles, were provided in [9],
where also a negative answer was given to the following question posed by Fujita
in 1982 ([20, Problem 5, p. 600, Proceedings of the 1982 Taniguchi Conference]).

To understand this question, it is not only important to have in mind Fujita’s
second theorem, but it is also very convenient to recall the following classical defi-
nition used by Fujita in [21, 22].

Let V be a holomorphic vector bundle over a projective curve B.

Definition 1.1. Let p : P := Proj(V ) = P(V ∨) → B be the associated projective
bundle, and let H be a hyperplane divisor (s.t. p∗(OP(H)) = V ).

Then V is said to be:

(NP) numerically semipositive, if and only if every quotient bundle Q of V has
degree deg(Q) ≥ 0,

(NEF) nef, if and only if H is nef on P,
(A) ample, if and only if H is ample on P,

(SA) semiample, if and only H is semiample on P (there is a positive multiple
mH such that the linear system |mH | is base point free).

Remark 1.1. Recall that (A) ⇒ (SA) ⇒ (NEF) ⇔ (NP), the last follows from
the following result due to Hartshorne [28].

Proposition 1.1. A vector bundle V on a curve is nef, if and only it is numerically
semipositive, i.e. if and only if every quotient bundle Q of V has degree deg(Q) ≥ 0,
and V is ample, if and only if every quotient bundle Q of V has degree deg(Q) > 0.

Moreover, we have also:

Definition 1.2. A flat holomorphic vector bundle on a complex manifold M is a
holomorphic vector bundle H := OM ⊗C H, where H is a local system of complex
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vector spaces associated to a representation ρ : π1(M) → GL(r,C),

H := (M̃ × Cr)/π1(M)

M̃ being the universal cover of M (so that M = M̃/π1(M)).
We say that H is unitary flat, if it is associated to a representation ρ : π1(M) →

U(r,C).

Question 1.1 (Fujita). Is the direct image V := f∗ωX|B semiample?

In [9], we established a technical result which clarifies how Fujita’s question is
very closely related to Fujita’s II theorem.

Theorem 1.2. Let H be a unitary flat vector bundle on a projective manifold M,

associated to a representation ρ : π1(M) → U(r,C). Then H is nef and moreover
H is semiample if and only if Im(ρ) is finite.

Hence in our particular case, where V = A⊕Q with A ample and Q unitary flat,
the semiampleness of V , simply means that the flat bundle has finite monodromy
(this is another way of wording the fact that the representation of the fundamental
group ρ : π1(B) → U(r,C) associated to the flat unitary rank-r bundle Q has finite
image).

The main new result in our joint work [9] was to provide a negative answer to
Fujita’s question in general.

Theorem 1.3. There exist surfaces X of general type endowed with a fibration
f : X → B onto a curve B of genus ≥ 3, and with fibres of genus 6, such that V :=
f∗ωX|B splits as a direct sum V = A⊕Q1⊕Q2, where A is an ample rank-2 vector
bundle, and the flat unitary rank-2 summands Q1, Q2 have infinite monodromy
group (i.e. the image of ρj is infinite). In particular, V is not semiample.

Recall however that in special cases, one can conclude that V is semiample.

Corollary 1.1. Let f : X → B be a fibration of a compact Kähler manifold X

over a projective curve B. Then V := f∗ωX|B is a direct sum V = A⊕ (
⊕h

i=1Qi),
with A ample and each Qi unitary flat without any nontrivial degree zero quotient.
Moreover,

(I) if Qi has rank equal to 1, then it is a torsion bundle (∃m such that Q⊗m
i is

trivial) (Deligne);
(II) if the curve B has genus 1, then rank (Qi) = 1, ∀ i;

(III) In particular, if B has genus at most 1, then V is semiample.

Proof. The idea of the proof is as follows:

(I) was proven by Deligne [13] (and by Simpson using the theorem of Gelfond–
Schneider), while;

(II) Follows since π1(B) is abelian, if B has genus 1: hence every representation
splits as a direct sum of one-dimensional ones.
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In our construction for Theorem 1.3, we started from hypergeometric integrals
associated to a cyclic group of order 7, and we derived the nonfiniteness of the
monodromy as a consequence of the classification due to Schwarz [43].

However, in order to provide a semistable fibration, we first resolved the sin-
gularities of the resulting surface fibres over P1, then applied blow ups in order to
achieve that the reduced divisors associated to the fibres would be normal crossing
divisors, and then applied the general method in order to construct a semistable
base change.

The final result was that these examples had a base of much larger genus, and
the description given was not fully detailed. The novelty of this paper, answering
a question by Osamu Fujino, is to provide an explicit semistable fibration without
having to take a base change, where the genus of the base curve B becomes too
large. This will be discussed in the fourth section, where we shall also give a simpler
proof.

An interesting observation, concerning the crucial difference of the roles played
by unitary flat bundles vs. flat bundles in our context, is given by the following
result. While a unitary flat bundle is nef, the same does not hold for a flat bundle.
This is no surprise, as communicated to the first author by Kollár, in view of the
following old theorem of Weil [45], reproven by Atiyah in [1].

Theorem 1.4 (Weil–Atiyah). A vector bundle V over a projective curve is
(isomorphic to) a flat holomorphic bundle if and only if, in its unique decompo-
sition as a direct sum V = ⊕iVi of indecomposable bundles, each of the summands
Vi has degree zero.

In our situation, we proved (again in [9], see also [35]).

Theorem 1.5. Let f : X → B be a Kodaira fibration, i.e. X is a surface and all
the fibres of f are smooth curves not all isomorphic to each other. Then the direct
image sheaf V := f∗ωX|B has strictly positive degree hence H := R1f∗(C) ⊗OB is
a flat bundle which is not nef (i.e. not numerically semipositive).

1.1. Semistable reduction

Assume now that f : X → B is a fibration of a compact Kähler manifold X , over a
projective curve B, and consider the invertible sheaf ω := ωX|B = OX(KX−f∗KB).

By Hironaka’s theorem, there is a sequence of blow-ups with smooth centers
π : X̂ → X , such that

f̂ := f ◦ π : X̂ → B

has the property that all singular fibres F are such that F =
∑

imiFi, and Fred =∑
i Fi is a normal crossing divisor.
Since π∗OX̂(KX̂) = OX(KX), we obtain

f̂∗ωX̂|B = f̂∗OX̂(KX̂ − f̂∗KB) = f∗OX(KX − f∗KB) = f∗ωX|B.
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Therefore, one can assume wlog that all the fibres of f have reduction, which is
a normal crossing divisor, and the well-known semistable reduction theorem, whose
statement is here reproduced, shows that one can reduce to the case, where the
fibration is semistable, i.e. all fibres are reduced and yield normal crossing divisors.

Theorem 1.6 (Semistable reduction theorem [34]). There exists a cyclic
Galois covering of B, B′ → B = B′/G, such that the normalization X ′′ of the fibre
product B′ ×B X admits a resolution X ′ → X ′′, such that the resulting fibration
f ′ : X ′ → B′ has the property that all the fibres are reduced and normal crossing
divisors.

X ′

f ′

��

v′
�� X ′′

��

v′′
�� X

f

��
B′ Id �� B′ u �� B.

The following proposition was used in [9], while reducing the proof of Fujita’s
second theorem to the semistable case.

Proposition 1.2. The sheaf V ′ := f ′∗ωX′|B′ is a subsheaf of the sheaf u∗(V ),
where V := f∗ωX|B, and the cokernel u∗(V )/V ′ is concentrated on the set of points
corresponding to singular fibres of f .

The proposition shows indeed that, when the fibration is not semistable, then
certain unitary flat summands on B′ may yield ample summands on B; and the
precise calculation given in its proof helps to decide exactly when this happens.

2. Fujita’s Second Theorem

The tools used for the proof of Fujita’s second theorem involve differential geometric
notions of positivity, which we now recall.

Definition 2.1. Let (E, h) be a Hermitian vector bundle on a complex manifold
M . Take the canonical Chern connection associated to the Hermitian metric h, and
denote by Θ(E, h) the associated Hermitian curvature, which gives a Hermitian
form on the complex vector bundle TM ⊗ E.

Then, one says that E is Nakano positive (respectively: semipositive), if there
exists a Hermitian metric h, such that the Hermitian form associated to Θ(E, h) is
strictly positive definite (respectively: semipositive definite).

Remark 2.1. Umemura proved [44] that a vector bundle V over a curve B is
positive (i.e. Griffiths positive, or equivalently Nakano positive), if and only if V is
ample.

One of the principal positivity property can be summarized through the well-
known slogan: ‘curvature decreases in sub-bundles’.

Except that one has to formulate the statement properly as follows: curva-
ture decreases in Hermitian sub-bundles. Indeed the example of Kodaira fibrations
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produces sub-bundles of a flat bundle (they have zero curvature), which are posi-
tively curved.

We pass now to sketch the ideas used in the proof of Fujita’s second theorem.

Theorem 2.1 (Fujita [22]). Let f : X → B be a fibration of a compact Kähler
manifold X over a projective curve B, and consider the direct image sheaf

V := f∗ωX|B = f∗(OX(KX − f∗KB)).

Then V splits as a direct sum V = A⊕Q, where A is an ample vector bundle and
Q is a unitary flat bundle.

2.1. Sketch of proof of Fujita’s theorem

(I) Thanks to the auxiliary results shown in the previous section, using the
semistable reduction theorem (yielding a base change B′ → B, such that all
fibres of the pull back X ′ → B′ are reduced with normal crossings) and in
particular Proposition 1.2, giving a comparison of the pull back of V with the
analogously defined V ′, it suffices to prove the theorem in the semistable case,
i.e. where each fibre is reduced and a normal crossing divisor (see [9, Proposi-
tion 2.9] for details).

(II) Idea of the proof in the case of no singular fibres.

V is a holomorphic sub-bundle of the holomorphic vector bundle H associated
to the local system HZ := Rmf∗(ZX), m := dim(X) − 1 (i.e. H = HZ ⊗Z OB).

The bundle H is flat, hence the curvature ΘH associated to the flat connection
satisfies ΘH ≡ 0.

We view V as a holomorphic sub-bundle of H, while

V ∨ ∼= Rmf∗OX , m = dim(X) − 1

is a holomorphic quotient bundle of H.
The curvature formula for sub-bundles gives (σ is the II fundamental form)

ΘV = ΘH|V + σ̄ tσ = σ̄ tσ

and Griffiths ([24], see also [26] and [48]) proves that the curvature of V ∨ is semi-
negative, since its local expression is of the form ih′(z)dz̄ ∧ dz, where h′(z) is a
semipositive definite Hermitian matrix.

In particular, we have that the curvature ΘV of V is semipositive and, moreover,
that the curvature vanishes identically, if and only if the second fundamental form
σ vanishes identically, i.e. if and only if V is a flat sub-bundle.

However, by semipositivity, we get that the curvature vanishes identically, if and
only its integral, the degree of V , equals zero. Hence V is a flat bundle, if and only
if it has degree 0.

The same result then holds true, by a similar reasoning, for each holomorphic
quotient bundle Q.
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(III) The more difficult part of the proof uses some crucial estimates given by
Zucker (using Schmid’s asymptotics for Hodge structures) for the growth of
the norm of sections of the L2-extension of Hodge bundles, and the following
lemma by Kawamata ([32], see also [41, Proposition 3.4, p. 11]).

Lemma 2.1. Let L be a holomorphic line bundle over a projective curve B, and
assume that L admits a singular metric h which is regular outside of a finite set S
and has at most logarithmic growth at the points p ∈ S.

Then the first Chern form c1(L, h) := Θh is integrable on B, and its integral
equals deg(L).

The above lemma shows that in the semistable case, singularities are influent,
and the argument runs as in the case of no singular fibres.

(IV) The existence of such a metric follows from the results of Schmid in [42] and
Zucker in [47], leading to the following lemma.

Lemma 2.2. For each point s ∈ B, there exists a basis of V given by elements
σj , such that their norm in the flat metric outside the punctures grows at most
logarithmically.

In particular, for each quotient bundle Q of V, its determinant admits a metric
with growth at most logarithmic at the punctures s ∈ S, and the degree of Q is given
by the integral of the first Chern form of the singular metric.

3. Cyclic Coverings of the Projective Line Branched
on Four Points

In this section, we explain how we obtain explicit examples of fibrations, where
V = f∗ω has a flat summand. Let ζn := e

2πi
n . Consider a cyclic covering of the

projective line with group Z/n, branched on four points. Hence a curve C = Cx

described by an equation

zn
1 = ym0

0 ym1
1 (y1 − y0)m2(y1 − xy0)m3 , x ∈ C\{0, 1}, (3.1)

where, of course, gcd(m0, . . . ,m3, n) = 1.
The above equation describes a singular curve inside the line bundle over P1

whose sheaf of sections is the sheaf OP1(1), and we denote by C the normalization
of this curve. Then C admits a Galois cover φ : C → P1 with cyclic Galois group
equal to the group of nth roots of unity in C,

G = {ζ ∈ C∗ | ζn = 1}
acting by scalar multiplication on z1. The choice of a generator in G yields an
isomorphism G ∼= Z/n, for instance, we have G = 〈ε〉, where ε acts as z1 �→ ζnz1.

The cover φ is branched at S = {s1 = 0, s2 = 1, s3 = x, s0 = ∞} (where, in
projective coordinates [y0, y1], one has 0 = [1, 0], 1 = [1, 1], x = [1, x], ∞ = [0, 1]).
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We shall make the restrictive assumption that

0 < mj ≤ n− 3 and m0 +m1 +m2 +m3 = n.

Remark 3.1. We want to point out that the above is indeed a restriction, even
if we allow a change of the generator of G taking the residue class of a number h
coprime to n. This change of generator has the effect of replacing mj with the rest
modulo n of hmj , which we denote by [hmj ].

Now, take the example, where n = 8 and m1 = m2 = 4, m3 = 3, m4 = 5. Then,
however, we change the generator of G, the residue class [h4] shall always be equal
to 4. Hence the sum [hm0]+ [hm1]+ [hm2]+ [hm3] > n = 8 always, and indeed the
sum is then always equal to 2n = 16 (observe in fact that Σ := ([hm0] + [hm1] +
[hm2] + [hm3]) ∈ {n, 2n.3n}, and changing mj to n−mj , Σ �→ 4n− Σ).

Now, for j ∈ Z/nZ, let χj : G → C∗, ζ �→ ζj and let Lj denote the rank-one
local system on P1\S, whose monodromy matrix αs at si is given by ζmi·j

n .

Let H1(C,C)j be the subspace of H1(C,C) on which G acts as χj . Then, one
has an isomorphism

H1(C,C)j = H1(P1\S,Lj)

and moreover

H1,0(P1\S,Lj) = H1,0(C)j ,

where H1,0(C)j is again the part of H1,0(C) on which G acts by the character χj

(cf. [14, Sec. 2.23]). For j �= 0, one has

dim(H1(C,C)j) = dim(H1(P1\S,Lj)) = 2.

For j �= 0, let µi,j = [mi·j]
n . By [14, Eq. (2.20.1)],

dimH1,0(P1\S,Lj) = −1 +
3∑

i=0

µi,j for j ∈ Z/nZ, j �= 0. (3.2)

Hence, under the above assumption (3.1), we have

H1(C,C)−1 = H1,0(C,C)−1 � H1,0(P1\S, L−1).

By [14, Proposition 2.20], the Hermitian form Hj on H1(P1\S,Lj) is positive
definite on H(1,0)(P\S,Lj) and negative definite on H(0,1)(P1\S,Lj). Hence the
positivity and the negativity index of Hj are given by(

−1 +
3∑

i=0

µi,j , 3 −
3∑

i=0

µi,j

)
. (3.3)

Varying x ∈ C\{0, 1}, one obtains a family of curves π : C → C\{0, 1} with fibre
π−1(x) = Cx, equipped with a compatible action of G. For each j ∈ Z/nZ, one also
obtains a local system L′

j on

M := {(x, y) ∈ C2 |x, y �= 0, 1, x �= y}
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which extends Lj to M. Let

f : M → C\{0, 1}, (x, y) �→ x.

The higher direct image Ĥ = R1π∗(C) decomposes then with respect to the G-
action into χj-equivariant parts

Ĥ =
⊕

j∈Z/nZ

Ĥj , where Ĥj = R1f∗L′
j .

If j �= 0, then the monodromy representation of Ĥj by (3.4) respects a Hermitian
form Hj of index (

−1 +
3∑

i=0

µi,j , 3 −
3∑

i=0

µi,j

)
. (3.4)

We shall prove in the Appendix, that this monodromy representation is irre-
ducible, if the mi’s are coprime to n (as we shall assume in the sequel). This result
and the following lemma shall be used to show the existence of a flat unitary sum-
mand with infinite monodromy: but we shall also give a self-contained and more
elementary proof of the main theorem, which only uses the second Fujita theorem.

The index of Hj is related to finiteness properties of the monodromy of Ĥj by
the following result which is a straightforward generalization of [4, Theorem 4.8]
(cf. [27]). We remark that the lemma applies in many other contexts, e.g. for more
general rigid local systems or motivic local systems, whose Hodge numbers can be
calculated (cf. [30, 15, 16]).

Lemma 3.1. Choose an embedding of Q̄ into C. Let K be either a finite abelian
extension of Q or a totally real Galois extension of Q. Denote by Gal := Gal(K/Q)
and let OK denote the ring of integers of K. Let Γ be a finitely generated group
and let ρ : Γ → GLn(OK) be an absolutely irreducible representation, whose image
shall be denoted by H := Im(ρ). Suppose that ρ respects a Hermitian form, i.e. there
exists a Hermitian matrix M = (mi,j) ∈ Kn×n with

ĀT MA = M ∀A ∈ H.

For σ ∈ Gal, let Mσ = (mσ
i,j). Then H is finite if and only if Mσ is a definite

Hermitian form for all σ ∈ Gal.

Proof. If H is finite, then H leaves the positive definite unitary form

v̄TMw :=
∑
h∈H

v̄T h̄Thw v,w ∈ Kn

invariant. By our assumptions on K, any σ ∈ Gal commutes with complex conju-
gation, hence Hσ leaves the form defined by the matrix Mσ invariant. Moreover,
Mσ is determined up to a constant, since Hσ is again irreducible. Since Hσ is also
finite, the matrix Mσ must be definite.
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Let now the form Mσ be definite for any σ ∈ Gal. By the additive isomorphism
OK � Zd (d = |Gal|), the representation ρ gives rise to a representation

ρ̃ : Γ → GLnd(Z)

such that the trace of ρ̃(g) coincides with the relative trace of ρ(g):

Trace(ρ̃(g)) = TraceK/Q(Trace(ρ(g)) =
∑

σ∈Gal

Trace(ρ(g))σ.

Extending the scalars from Z to C, we obtain from ρ̃ a representation

ρ̃⊗ C : Γ → GLnd(C).

Since any semisimple representation with values in C is determined up to isomorphy
by its trace by the theorem of Brauer–Nesbitt, there exists a matrix g ∈ GLn(C),
such that

(ρ̃⊗ C)g =
∏

σ∈Gal

ρσ ⊗ C,

where ρσ⊗C denotes the extension of scalars of ρσ from OK to C. By the definiteness
of the forms Mσ (σ ∈ Gal), the latter representation takes its values in the product∏

σ∈Gal U(Mσ) of the compact unitary groups U(Mσ) associated to the Hermitian
forms Mσ (σ ∈ Gal). We conclude that the image of ρ̃ is contained in the compact
and discrete group ( ∏

σ∈Gal

U(Mσ)g−1)
∩ GLnd(Z)

and is hence finite. Therefore the image of ρ is finite.

The next result is a straightforward consequence of the above lemma (of course,
it may also be derived by Schwarz’ list of hypergeometric differential equations with
finite monodromy [43]). For simplicity, we restrict ourselves to the cases considered
in the next section.

Corollary 3.1. Assume that

n ∈ N, n ≥ 5, such that GCD(n, 6) = 1, m0,m1,m2,m3 ∈ N,

with 1 ≤ mj ≤ n− 1, m0 +m1 +m2 +m3 = n,

mk, (mi +m3) ∈ (Z/nZ)∗, ∀ i = 0, 1, 2, k = 0, 1, 2, 3.

Then there is j ∈ (Z/nZ)∗, such that the monodromy of the local system Ĥj is
infinite.

Proof. Since n − 1 and m0 + m3 are invertible in Z/nZ, there is a j, such that
j(m0 +m3) ≡ −1 (mod n).

Define now m′
i := [mij], so that m′

0 +m′
3 = n− 1.
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We have the obvious inequalities 2 ≤ m′
1 +m′

2 ≤ 2n− 2. Hence

n+ 1 ≤ m′
0 + · · · +m′

3 ≤ 3n− 3

and therefore

m′
0 + · · · +m′

3 = 2n.

Hence the underlying unitary form is indefinite by formula (3.4), hence the mon-
odromy is infinite by Lemma 3.1 and Proposition A.1.

4. Abelian Coverings of P1 × P1 Yielding Surfaces which are
Counterexamples to Fujita’s Question

In this section, we shall provide an infinite series of examples of surfaces fibred
over a curve, whose fibres are curves with a symmetry of G := Z/n (and with
quotient P1).

To avoid too many technicalities, we make the following simplifying assump-
tions, part of which were already mentioned in Corollary 3.1:

n ∈ N, n ≥ 5, such that GCD(n, 6) = 1, m0,m1,m2,m3, n0, n1, n2 ∈ N,

with 1 ≤ ni,mj ≤ n− 1, m0 +m1 +m2 +m3 = n, n0 + n1 + n2 = n

mj , ni, (mi +m3) ∈ (Z/n)∗, ∀ i = 0, 1, 2, j = 0, 1, 2, 3.

Lemma 4.1. Such integers ni,mj satisfying the above properties exist, if and only
if n and 6 are coprime.

Proof. If n is even, then if mj is a unit in Z/n, then mj is odd, but then mi +m3

is even, and cannot be a unit.
If instead 3 |n, then without loss of generality

m0 ≡ m3 (mod 3), m1 ≡ m2 ≡ −m3 (mod 3)

but then m1 +m3 is not a unit in Z/n.
Finally, if GCD(n, 6) = 1, then we can simply choose

m0 = m1 = m2 = 1, m3 = n− 3, n0 = n1 = 1, n2 = n− 2.

Definition 4.1. We shall refer to the choice

m0 = m1 = m2 = 1, m3 = n− 3, n0 = n1 = 1, n2 = n− 2

as the standard case.

We consider again the equation

zn
1 = ym0

0 ym1
1 (y1 − y0)m2(y1 − xy0)m3 , x ∈ C\{0, 1}
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but, we homogenize it to obtain the equation

zn
1 = ym0

0 ym1
1 (y1 − y0)m2(x0y1 − x1y0)m3xn−m3

0 .

The above equation describes a singular surface Σ′, which is a cyclic covering of
P1×P1 with group G := Z/n; Σ′ is contained inside the line bundle L1 over P1×P1

whose sheaf of holomorphic sections L1 equals OP1×P1(1, 1).
The first projection P1 × P1 → P1 induces a morphism p : Σ′ → P1 and we

consider the curve B, normalization of the covering of P1 given by

wn
1 = xn0

0 xn1
1 (x1 − x0)n2 .

We consider the normalization Σ of the fibre product Σ′ ×P1 B.
Σ is an abelian covering of P1×P1 with group (Z/n)2, and the local monodromies

are as follows:

{y = ∞} = {y0 = 0} �→ (m0, 0), {y = 0} = {y1 = 0} �→ (m1, 0),

{y = 1} = {y1 = y0} �→ (m2, 0),

{x = ∞} �→ (n−m3, n0), {x = 0} �→ (0, n1), {x = 1} �→ (0, n2),

∆ := {(x0y1 − x1y0) = 0} �→ (m3, 0).

Since the branch divisor is a not a normal crossing divisor, we blow-up the three
points P0 := {x0 = y0 = 0}, P1 := {x1 = y1 = 0}, P2 = {x0 − x1 = y0 − y1 = 0}.

We obtain in this way a del Pezzo surface, which we denote by Z, we denote
by Ei the exceptional (−1)-curve inverse image of the point Pi, and we notice that
the pull back of the branch divisor is now a normal crossing divisor.

The local monodromies around the three exceptional divisors are now

E0 �→ (m0, n0), E1 �→ (m1 +m3, n1), E2 �→ (m2 +m3, n2).

We finally define S to be the normalization of the pull back Σ ×P1×P1 Z.

Proposition 4.1. The surface S is smooth, and each irreducible component of the
branch locus B has local monodromy of order n.

Proof. Given two irreducible components Bi, Bj , they are smooth and they inter-
sect transversally in exactly one point, or are disjoint. Hence, it is sufficient to
show

• that the inertia subgroups (image of the local monodromy) are cyclic of order n;
• if Bi, Bj intersect, the corresponding inertia subgroups generate (Z/n)2.

By our assumptions, all the local monodromies are elements of order n, hence
the first assertion.
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The second assertion follows from the following fact: (Z/n)2 is generated by
pairs of the form

(a, 0), (0, b), a, b ∈ (Z/n)∗,

(a, 0), (c, b), a, b ∈ (Z/n)∗,

(0, a), (b, c), a, b ∈ (Z/n)∗

or of the form

(n−m3, n0), (m0, n0)

since their span is the span of (n−m3−m0, 0), (m0, n0) and n0,m3 +m0 are units
in (Z/n).

Proposition 4.2. Let f : S → B be the morphism induced by the projection
Σ → B. Then

(1) The genus of the fibres F equals g = n− 1.
(2) The genus of the base curve B equals b = n−1

2 .

(3) All the fibres are smooth, except the fibres over x = 0, x = 1, x = ∞, which
consists of two smooth curves of genus b intersecting transversally in exactly
one point.

(4) f is the Albanese map of S, i.e. b = q := h1(OS) = h1(OS(KS)).

Proof. (1) and (2) follow from Hurwitz’ formulae:

2(g − 1) = −2n+ 4(n− 1), 2(b− 1) = −2n+ 3(n− 1),

since the general fibre is a (Z/n)-cyclic cover of P1 totally ramified in four points,
while B is a (Z/n)-cyclic cover of P1 totally ramified in three points.
(3) The fibres over x = 0, x = 1, x = ∞ are the inverse images of two smooth curves
meeting transversally in exactly one point P and which are part of the branch locus
B. The covering is totally branched on P , hence these special fibres consist of two
smooth curves meeting transversally in exactly one point P ′. Both are (Z/n)-cyclic
covers of P1 totally ramified in three points, hence their genus equals b.

The other fibres are the inverse image of a P1 intersecting the branch locus
transversally in four points, hence they are all smooth of genus g = n− 1.
(4) There are several ways to prove that b = q, some more explicit, the following
one is in the spirit of this paper.

We want to calculate

q := h1(OS) = h1(OS(KS)) = h1(ωS|B(KB))

and we denote ωS|B for short by ω.
We use the Leray spectral sequence for f , saying that

q = h0(B,R1f∗(ω)(KB)) + h1(f∗(ω)(KB)).

The first term, by relative duality, equals b = h0(B,OB(KB)), while the second
vanishes, as f∗(ω) = V = A ⊕ Q by Fujita’s second theorem. Then h1(V (KB)) =
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h0(V ∨) by Serre duality, and h0(A∨) = 0 since A is ample, while h0(Q∨) = 0, else
the monodromy of some summand of the unitary flat bundle Q would have trivial
monodromy, contradicting the irreducibility of the monodromy representation.

Proposition 4.3. The smooth surface S is minimal of general type with KS ample,
and with invariants

e(S) = c2(S) = 3 + 2(n− 2)(n− 3) = 2n2 − 10n+ 15; K2
S = 5(n− 2)2.

They have positive index σ(S) = 1
3 (K2

S − 2e(S)) > 0 and indeed their slope
K2

S

e(S) ≥ 2, 5.
We have that the universal cover of S is the unit ball in C2, if and only if n = 5,

which corresponds to the case of three distinct surfaces S′, S′′, S′′′.

Proof. The calculation for the topological Euler–Poincaré characteristic e(S) fol-
lows from the Zeuthen–Segre formula asserting that e(S) equals the sum of the prod-
uct e(B)e(F ) = 4(b−1)(g−1) with the number µ of singular fibres counted with mul-
tiplicity: here therefore µ = 3 and we get e(S) = 3+2(n−2)(n−3) = 2n2−10n+15.

To calculate K2
S , we observe that KS is numerically equivalent to the pull back

of KZ + n−1
n B.

Since B ≡ 4L1 + 4L2 − 2ΣiEi, where L1, L2 are the total transforms of the two
rulings of P1×P1, and KZ = −2L1−2L2 +ΣiEi, we obtain that B ≡ −2KZ, hence
KS is numerically equivalent to the pull back of KZ + n−1

n B = −n−2
n KZ .

Since −KZ is ample, and K2
Z = 5, we easily obtain that S has ample canonical

divisor KS , and

K2
S = 5(n− 2)2.

The surface S is minimal since KS is ample.
We now calculate the slope as

5(n− 2)2

3 + 2(n− 2)(n− 3)
=

5
2

n− 2
n− 3 + 3

2(n−2)

>
5
2
.

The same formula shows that the slope is a strictly decreasing function of n,
tending to 5

2 as n → ∞, and beginning with slope = 3 for n = 5. But, by the
theorem of Yau, slope equal to 3 is equivalent to having the ball as universal cover.

Consider now the case n = 5: the four-tuple of residue classes modulo 5 is
equivalent, modulo simultaneous multiplication by a unit, to 1 +1 +1 +2 = 5, and
this is the only representation via integer rests which add up to 5. Also the ni are
uniquely determined as 1 + 2 + 2 = 5.

There are two different cases: m3 �= mi, or (up to renumbering) m3 = m0 = m1;
in this second case there are two subcases, according to n0 = n1 or n0 �= n1.

Remark 4.1. The above three surfaces, which occur for n = 5 have already been
constructed in [3].
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Being ball quotients, they are rigid.
In joint work of the first author together with Ingrid Bauer, it was recently

shown that the above surfaces S for n ≥ 5 are rigid.
Another interesting question is whether the surfaces S are always K(π, 1)’s, i.e.

whether their universal covering is always contractible.

Recall now the following algebraic formula for the Euler number, the so-called
Zeuthen–Segre formula (see the lecture notes [6]).

Definition 4.2. Let f : S → B be a fibration of a smooth algebraic surface S onto
a curve of genus b, and consider a fibre Ft =

∑
niCi, where the Ci are irreducible

curves.
Then the divisorial singular locus of the fibre is defined as the divisorial part of

the critical scheme, Dt :=
∑

(ni−1)Ci, and the Segre number of the fibre is defined
as

µt := degF +DtKS −D2
t ,

where the sheaf F is concentrated in the singular points of the reduction of the
fibre, and is the quotient of OS by the ideal sheaf generated by the components of
the vector dτ/s, where s = 0 is the equation of Dt, and where τ is the pull back of
a local parameter at the point t ∈ B.

More concretely,

τ =
∏
j

f
nj

j , s = τ

/(∏
j

fj

)

and the logarithmic derivative yields

dτ = s


∑

j

nj

(
dfj

∏
h �=j

fh

).
The following is the refined Zeuthen–Segre formula.

Theorem 4.1. Let f : S → B be a fibration of a smooth algebraic surface S onto
a curve of genus b, and with fibres of genus g.

Then

c2(S) = 4(g − 1)(b− 1) + µ,

where µ =
∑

t∈B µt, and µt ≥ 0 is defined as above. Moreover, µt is strictly positive,
except if the fibre is smooth or a multiple of a smooth curve of genus g = 1.

Proposition 4.4. Let S be one of the surfaces considered in this section. Then any
surface X, which is homeomorphic to S has Albanese map which is a fibration onto
a curve B of the same genus b = 1/2(n−1) as the Albanese image of S. If moreover
X is diffeomorphic to S, the Albanese fibres have the same genus g = 2b = n − 1
and, if the number of singular points on the fibres is finite, there are only three
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singularity on the fibres, counted with multiplicity. In particular, there are at most
three singular fibres.

Proof. The first two statements follow directly from [7], Theorem A.
For the last statement, we invoke the above refined Zeuthen–Segre formula

e(X) = 4(b− 1)(g − 1) + µ.

Since b, g are the same for S and X , it follows that µ = 3, which shows the third
assertion.

The refined version of the Zeuthen–Segre formula implies in particular that,
if D is the divisorial part of the critical locus, then 3 = µ ≥ DKX − D2, where
DKX −D2 = 2p(D) − 2 − 2D2 is a positive even number.

Each nonreduced fibre Ft = ΣiniCi gives a contribution Dt := Σi(ni − 1)Ci to
D, and Zariski’s lemma says that, if Dt �= 0, then D2

t < 0 unless Ft is a multiple
fibre.

If we had a multiple fibre Ft = mC, then we would haveDtKX −D2
t = DtKX =

(m−1)/mFKX = (2g−2)(m−1)/m≥ (g−1) ≥ 4, which is a contradiction. Hence
there are no multiple fibres.

Assume that Ft is a nonreduced fibre, so that Dt �= 0: then DtKX −D2
t = 2,

since it is a strictly positive even integer which is not greater than 3.
So, if there are infinitely many singular points on the fibres, then there is exactly

one nonreduced fibre and at most one more singular point; in particular, there are
at most two singular fibres.

We can summarize our main result in the following theorem, for which we give
two proofs, one self-contained and based on Fujita’s second theorem, the other
based on the theory of hypergeometric integrals.

Theorem 4.2. There exists an infinite series of surfaces with ample canonical
bundle, whose Albanese map is a fibration f : S → B onto a curve B of genus
b = 1/2(n− 1), with fibres of genus g = 2b = n− 1; here n ≥ 5 can be any integer
relatively prime with 6 and f is as in Proposition 4.2.

These Albanese fibrations yield negative answers to Fujita’s question about the
semiampleness of V := f∗ωS|B, since here V := f∗ωS|B splits as a direct sum
V = A⊕Q, where A is an ample vector bundle, and Q is a unitary flat bundle with
infinite monodromy group.

The fibration f is semistable: indeed all the fibres are smooth, with the exception
of three fibres which are the union of two smooth curves of genus b, which meet
transversally in one point.

For n = 5, we get three surfaces which are rigid, and are quotient of the unit
ball in C2 by a torsion free cocompact lattice Γ.

The rank of A, respectively Q is in this case equal to 2.
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Proof. By Propositions 4.1–4.3, the only assertion, which needs to be shown is
that, if we consider the splitting of V := f∗ωS|B as a direct sum V = A⊕Q, where
A is an ample vector bundle, and Q is a unitary flat bundle, then Q has infinite
monodromy group.

We observe that the group G = Z/n acts on the fibration, thus we have a
splitting according to the characters of G, j ∈ Z/n,

V =
⊕

j∈Z/n

Vj .

The fact that all the fibres are smooth and that the only singular fibres are
two smooth curves intersecting transversally in one point shows that the vanishing
cycles are homologically trivial. Hence the local monodromies in cohomology are
trivial, thus we have a flat vector bundle H := R1f∗(C), which is a holomorphic
flat bundle having V as a holomorphic sub-bundle.

Similarly, we have a splitting

H =
⊕

j∈Z/n

Hj ,

where the flat bundles Hj have all rank 2 for j �= 0, as observed in section three.
Moreover, we have the following direct sum of complex vector bundles Hj =

Vj ⊕ V−j , and there are a priori several possible cases:

• Hj = Vj and V−j = 0, hence Vj is a flat holomorphic bundle; in this case the
bundle Hj carries a flat Hermitian form which is positive definite;

• Hj = V−j and Vj = 0, hence V−j is a flat holomorphic bundle; in this case the
bundle Hj carries a flat Hermitian form which is negative definite;

• Hj = Vj ⊕ V−j , both summands have rank 1, and here the bundle Hj carries a
flat Hermitian form which is indefinite. This case could a priori bifurcate in the
cases Vj is flat, or Vj is ample (i.e. it has strictly positive degree).

First Proof:

Step 1: V is not flat.
In fact, otherwise (see for instance [9, Theorem 4])

0 = 12 deg(V ) = K2
S − 8(g − 1)(b− 1);

hence K2
S = 8(g − 1)(b− 1) = 2e(S) − 6, contradicting Proposition 4.3.

Step 2: Hence V = ⊕jVj admits an ample rank 1 summand Vj = Aj .

Step 3: It suffices to prove the theorem in the case, where n is prime.

In fact, if k divides n, n = hk, we have an anologous fibration fk : Sk → Bk for
the surface Sk obtained by taking the associated (Z/k)2 covering.

Pulling back the fibration to B, under ψ : B → Bk, we obtain a surface S′ =
S/G′, where G′ = Z/h; and the fibration f factors through f ′ : S′ → B. Hence
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V ′ = ψ∗(Vk) is a direct summand of V and we are done, since V ′ has a unitary flat
summand Q′ with infinite monodromy.

Step 4: There is an eigenbundle Hj with infinite monodromy.
This follows from Step 2 and the following lemma.

Lemma 4.2. If Vj = Aj is an ample rank 1 summand, then Hj is irreducible and
with infinite monodromy.

Proof (of the Lemma). We first show that the rank two flat vector bundle is
irreducible. Otherwise, there would be an exact sequence of flat vector bundles

0 → H′ → Hj → H′′ → 0,

where both H′,H′′ have rank 1.
Since Hj = Vj⊕V−j , we get a nontrivial homomorphism Vj → Hj which realizes

Vj as a holomorphic sub-bundle. Composing with the above surjection Hj → H′′,
we get a holomorphic homomorphism Vj → H′′, which must be zero since the
target has degree zero, while Vj = Aj has positive degree. We deduce a nontrivial
holomorphic homomorphism Vj → H′, which must be zero by the same argument,
and we have found a contradiction to the fact that Vj → Hj is injective.

Step 4. Observe preliminarily that our surfaces, the Albanese map f and all the
bundles V , Q are defined over Z.

Now, by construction we have a flat rank 2 summand V−1 = H−1 (since m0 +
m1 + m2 + m3 = n). Hence, when n is prime, H−1 and Hj are Galois conjugate.
The condition that the monodromy is infinite is obviously invariant under Galois
conjugation (since a finite group of matrices transforms to a finite group under a
field automorphism).

Hence also V−1 = H−1 has infinite monodromy, and it is a direct summand of
Q with infinite monodromy.

Second Proof: By Corollary 3.1, there is j ∈ (Z/n)∗, such that Ĥj carries a
monodromy invariant indefinite Hermitian form Hj , and is irreducible with infinite
monodromy.

Therefore also Hj has infinite monodromy. Since j is a unit, it follows that H−1

and Hj are Galois conjugate. Hence V−1 = H−1 has also infinite monodromy, and
the same holds for Q, of which V−1 is a direct summand.

Remark 4.2. In the standard case, V has a lot of flat summands.
In fact, Vj = 0 for j ≤ n

3 (since 3j ≤ n implies j + j + j + [j(n − 3)] < 2n ⇒
j + j + j + [j(n− 3)] = n); hence V−j i flat for j ≤ n

3 .
On the other hand, for n = 11, we can take m0 = 1, m1 = 2, m2 = 3, m3 = 5

and then only V10 is a flat summand, of course with infinite monodromy.
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5. General Observations and Relation with Shimura Curves

Consider our surfaces S → B as yielding a curve inside the compactified moduli
space of curves of genus g = n−1. The image ofB inside Mg intersects the boundary
only in points belonging to the divisor ∆g/2,g/2.

Moreover, under the Torelli map Mg → Ag, the image does not go to the
boundary, since the singular fibres have compact Jacobian.

For n = 5, we obtain a rigid curve inside Mg, a phenomenon which is not new:
compare the examples provided by double Kodaira fibrations [8].

Now, B parametrizes all the curves with an action of Z/n, whose quotient is P1,
and with branch locus S consisting of four points: because all deformations preserv-
ing the symmetry come from H1(C,ΘC)G, which is isomorphic to H1(P1,Θ(−S)),
the space of logarithmic deformations of the pair consisting of P1 and the four
points on it.

B parametrizes, via the Torelli map, also principally polarized Abelian surfaces
with such a symmetry.

The question is whether the symmetry-preserving deformations of these Abelian
varieties are just the ones parametrized by B.

The main point is that (see [11] and [18], especially for more details concerning
the relation with Shimura curves) the dual of H1(C,ΘC)G equals H0(2KC)G, while
the tangent space to the symmetry-preserving deformations of the Abelian varieties
is given by

Sym2(H0(KC))G = Sym2

(⊕
j

Vj

)G

=
⊕

j≤n/2

(Vj ⊗ V−j).

Observe that V0 = 0, while, for a character j, writing as usual µi,j = 1
n [mij],

the condition
∑

i µi,j = 2 is equivalent to dim (Vj ⊗ V−j) = 1, else one has dim
(Vj ⊗ V−j) = 0.

In other words, the number of parameters for the symmetry-preserving defor-
mations of these Abelian varieties is just the number of rank 2 ample bundles in
the direct image sheaf f∗(ω).

If there is only one such ample summand, then this means that, we have a
Shimura curve in Ag. This situation leads to a finite number of cases, which were
classified by Moonen in [39] (see [18] for groups more general than cyclic groups).

Interest in these Shimura curves is due to a conjecture by Oort, that there should
not be such curves as soon as g is bigger than 7, see [38] and references therein for
results in this direction.
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Appendix

Proposition A.1. Let m0,m1,m2,m3, n ∈ Z with 0 < mk ≤ n − 3 (0 ≤ k ≤ 3)
and m0 + m1 + m2 + m3 = n. For j ∈ 1, . . . , n − 1, let Ĥj be the local sys-
tem as in Sec. 3. Assume additionally that each of the numbers m0, . . . ,m3 is
coprime to n (respectively, assume that j is coprime to n with no further assump-
tion on m0, . . . ,m3). Then the local systems Ĥj are irreducible for j = 1, . . . , n− 1
(respectively, for j prime to n).

Proof. By construction, the local sections of Ĥ−j are variations in x of periods on
the desingularizations of the curves

zn
1 = ym0

0 ym1
1 (y1 − y0)m2(y1 − xy0)m3 , x ∈ C\{0, 1}

of the form (given on the affine part belonging to y1 = 1)∫
γ

ys
0(1 − y0)t(1 − xy0)u

zj
1

dy0,

where s, t, u are integers, cf. [46, Sec. 2]. It is convenient to introduce integers
A,B,C and rational numbers a, b, c by the following conditions:

A = (1 − b)n = m0, B = (b + 1 − c)n = m2,

C = an = m3, n− A−B − C = m1.

Therefore

a =
m3

n
, b = 1 − m0

n
, c = 2 − m0

n
− m2

n
.

If γ denotes integration from 0 to 1, then the above integral can be expressed as a
hypergeometric function as follows:∫ 1

0

ys
0(1 − y0)t(1 − xy0)u

zj
1

dy0

= D · 2F1(ja− u, jb− j + 1 + s, jc− 2j + 2 + t+ s;x),

where D is a constant in C, cf. [46, Formula (7)]. Hence, in order to show that
Ĥj is irreducible, it suffices to show that the hypergeometric differential equation
belonging to 2F1(ja − u, jb − j + 1 + s, jc − 2j + 2 + t + s;x) is irreducible. This
is the case, if and only if the values ja − u, jb − j + 1 + s and the differences
(jc − 2j + 2 + t + s) − (ja − u), (jc − 2j + 2 + t + s) − (jb − j + 1 + s) are not
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contained in Z, cf. [5, Corollary 3.10]. Obviously, the latter condition holds if and
only if the values ja = jm3

n , jb = − jm0
n + j and

ja− jc =
jm3

n
+
jm0

n
+
jm2

n
− 2j = − jm1

n
− j

as well as

jb− jc = j − jm0

n
+
jm0

n
+
jm2

n
− 2j =

jm2

n
− j

are not contained in Z. This holds by our assumptions.
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