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Introduction

What is a lemniscate?
If the reader looks on the web, or in the classical literature, as an answer, he will find
the lemniscate of Bernoulli, which is the singular level set of the function |z2 − c2|.
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The level sets of such a function are called Cassini’s ovals: they are just the sets of
points z in the complex plane C such that the product |z− c||z+ c| of the respective
distances of z from the points +c,−c, where c ∈ R, is equal to a constant (whereas
ellipses are defined by the condition that the sum of the distances from two given
points is constant).

Since any univariate polynomial P (z) ∈ C[z] is a product of linear factors, P (z) =∏r
1(z−wj), we see that if we take r points w1, . . . , wr in the plane, the locus of points

z such that the product of the r respective distances |z −wj| is equal to a constant,
is just a level set of the absolute value |P (z)| of the complex polynomial P (z).

Using this analogy, the second author and Marco Paluszny in [CP91] defined a
big lemniscate as a singular level set of the absolute value |P (z)| of the complex
polynomial P (z), and a small lemniscate as a singular connected component of a big
lemniscate.

If we take the square F (z) = |P (z)|2 = P (z)P (z), we obtain a real polynomial
F ∈ R[x, y] and if the points w1, . . . , wr are distinct, they are absolute minima with
nondegenerate Hessian, and the major results of [CP91] consisted in describing the
topological configurations of the union of the big lemniscates (resp.: of the small
lemniscates) in the special situation where f := log(F ) is a global Morse function,
i.e, a function whose critical points yi all have a non-degenerate Hessian, and such
that all the critical values vi := f(yi) are different.

Here, the critical points of F are just the absolute minima w1, . . . , wr, and the
roots y1, . . . , yr−1 of the complex derivative P ′(z): the points yi have (negativity)
index 1, and are thus saddle points.

There is a beautiful order which governs the pictures of these lemniscates, and
leads to nice and interesting generating functions. The key idea is to enumerate the
components where the topological configuration is fixed as the orbits of a subgroup
of the braid group acting on the set of edge labelled trees.

While the first two authors ([BC97]) generalized these investigations to the case
of an algebraic function on a Riemann surface (i.e., a connected complex manifold of
complex dimension equal to 1), Marco Paluszny ([PMO05] and [AMOP06]) defined
and started to investigate the similar loci in R3, producing nice pictures of the
corresponding configurations.

The first purpose of the present paper is to lay the foundation of the theory of
lemniscates in RN , proving some rather strong basic results.

Definition 0.1.

(1) Let w1, . . . , wr ∈ RN be distinct points, and consider the functions

F : RN → R+, F (x) :=
r∏
1

|x− wj|2, f(x) := logF (x) =
r∑
1

log(|x− wj|2).
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(2) A big lemniscate (for w1, . . . , wr ∈ RN) is defined to be a singular level set
Γc of f(x). The big lemniscate configuration of f is the union Γ(f) of the
singular level sets Γc.

(3) A small lemniscate (for w1, . . . , wr ∈ RN) is defined to be a connected com-
ponent Λc of a level set Γc = {x|f(x) = c}, which is singular. The small
lemniscate configuration of f is the union Λ(f) of the small lemniscates.

(4) The configuration Λ(f) of small lemniscates is said to be weakly generic if the
function f(x) is a (local) Morse function, i.e., its critical points yi all have a
non-degenerate Hessian.

(5) The configuration of big lemniscates Γ(f) is said to be generic if the function
f(x) is a global Morse function, i.e., it is a Morse function and the critical
values f(yi) are all different (notice that the absolute minima for F (x) are
just the zeros of F (x), i.e., the points wj, which are all automatically non
degenerate).

Figure 1. A generic big lemniscate configuration for r = 4 sur-
rounded by a non singular level set. The four points are still visible at
the interior of the lemniscates.

In the case where the points w1, . . . , wr lie in an affine plane contained in RN , the
situation is easy to analyse, see corollary 4.3, and, like in the case N = 2, if f is a
Morse function, we have just r − 1 critical points of (negativity) index 1.

The following are our main theorems.
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Theorem 0.2. Let w1, . . . , wr ∈ RN be distinct points, not lying in a (real) affine
plane, and consider the functions

F : RN → R+, F (x) :=
r∏
1

|x− wj|2, f(x) := logF (x) =
r∑
1

log(|x− wj|2).

Then at every critical point of f(x) (resp.: of F (x)) the Hessian has positivity at
least N − 1.
In particular, the index of negativity can only be 0 or 1.
Moreover, the set of critical points consists of isolated points, plus possibly a finite
set of circles (compact real submanifolds of dimension 1) consisting of local minima.

Theorem 0.3. Let w1, . . . , wr ∈ RN and let

F : RN → R+, F (x) :=
r∏
1

|x− wj|2, f(x) := logF (x) =
r∑
1

log(|x− wj|2)

be as in theorem 0.2.

(1) Assume that F is a (local) Morse function: then F (x) has r absolute minima,
h local minima, and exactly r + h− 1 critical points of (negativity) index 1.

(2) There are examples already in R3, where h can be arbitrarily large.

Remark 0.4. Part (1) of the above theorem is a direct consequence of theorem
0.2 and standard Morse theory. Part (2) is shown in section 8, see in particular
proposition 9.1.

The results are based, once again, on elementary complex analysis: but this time in
several variables.

The first idea is to take an isometric embedding of RN into Cn (n = [N−1
2

] + 1).
This is crucial, since on a complex vector space any real bilinear form can be written
as the sum Q+L+ Q̄ where Q is a complex bilinear form, and L (the Levi form) is
Hermitian: the easiest case being n = 1, where, if z = x+ iy, a, b, c ∈ R,

(a+ ib)z2 + (a− ib)z̄2 + czz̄ = 2a(x2 − y2)− 4bxy + c(x2 + y2).

Then we prove (under the assumption that w1, . . . , wr are not contained in a complex
line), using the classical Fubini-Study form, that the function f is strictly plurisub-
harmonic, i.e., its Levi form L is strictly positive definite.
The second trick is then to choose an appropriate isometric embedding as above,
in order to prove the statement about the positivity of the Hessian at each critical
point. The rest is a consequence of the generalised Morse lemma.

For theorem 0.2, we just use topology and Morse theory, and we exploit symmetry
in order to produce ‘extra’ local (but not global) minima.
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The topological configuration is then easily described by the graph whose edges are
the saddle points of F , in a similar fashion to in [CP91].

The second main purpose of this paper is to propose as a theme of investigation the
description of the configurations of generic big and small lemniscate configurations.
Even if we cannot use the Riemann existence theorem as in real dimension two,
our first main theorem yields a very strong information: the critical points have
positivity at least N − 1, hence, by the generalized Morse lemma, there are local
analytic coordinates u1, . . . , uN such that f has one of these two normal forms:

(1) f(u) = u21 + · · ·+ u2N−1 ± ukN ;

(2) f(u) = u21 + · · ·+ u2N−1.

In the first case the critical points are isolated, in the second case, since the critical
set is shown to be compact, we obtain smooth curves diffeomorphic to circles.

The compactness of the set of critical points is shown by the generalization of a
theorem of Gauss: lemma 4.1 asserts that the critical points lie in the convex hull of
the points w1, . . . , wr.

Definition 0.5.

(1) Define GL(r,N) as the open set of the space (RN)rof r (distinct) points in RN

such that the function f(x) =
∑r

k=1 log |x− wk|2 is a global Morse function,
i.e. we have a generic big lemniscate configuration Γ(f).

(2) We say that two big lemniscate configurations Γ(f1), Γ(f2) have the same
topological type if there is a homeomorphism of the pair (RN ,Γ(f1)) with the
pair (RN ,Γ(f2)).
We have then a map from the set π0(GL(r,N)) of the connected components
of the set of lemniscate generic r-tuples of points to the set of topological types.

(3) Denote by b(r,N) the number of connected components of GL(r,N) and by
a(r,N) the corresponding number of topological types of the big lemniscate
configurations, by c(r,N) the corresponding number of topological types of the
small lemniscate configurations.
We define the corresponding generating functions as

BN(t) :=
∑
r

b(r + 1, N)

r!
tr, AN(t) :=

∑
r

a(r + 1, N)

r!
tr,

CN(t) :=
∑
r

c(r + 1, N)tr.

Similarly, define b(r,N, h) the number of connected components of GL(r,N)
where f has h local minima, and define similarly

a(r,N, h), c(r,N, h), BN,h(t), AN,h(t), CN,h(t).
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Figure 2. Another generic big lemniscate configuration for r = 4.

In the appendix to [CP91] it is shown that, in dimension m = 2, where h = 0,
b(r, 2) = a(r, 2) and the function

A2(t) = B2(t) =
1

1− sin t
.

More complicated results were shown for the number of small lemniscate configura-
tions.

In this view, these are the questions which we would like to pose.

Question 0.6.

(1) Given (r,N), which is the maximal number M(r,N) = max{h} of (non
global) local minima for the function f?

(2) What is the form of the generating functions AN(t), BN(t), BN,h(t), AN,h(t)?
(3) Is it true that the AN = BN as in the case N = 2?

To shed light on the above questions, let us observe that the connected components
of the configuration space of r distinct points consist of several domains, separated
by walls of two different types.

The first type of walls contain as general points r-tuples w1, . . . , wr such that the
associated function f has a simple singularity of the form u21 + · · · + u2N−1 + u3N ; a
pair of nondegenerate critical points, of respective indices 0, 1, go to disappear when
crossing the wall in one direction: we shall call these walls of quantitative type, since
the number of critical points changes.
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The second type of walls are those where two critical values become equal: here
crossing the wall the topological type of the big lemniscate configuration may change,
hence we shall call these walls of qualitative type.

Finally, concerning the first question, we get examples with 4 points in R3 and
h = 1, and, for every h ≥ 2, with r = 3h points in R3 and h non global minima.
These examples suggest the conjecture that h may be bounded by a constant times
r.

Let’s end this introduction by describing a straightforward but potentially quite
useful application of the Gauss-type lemma 4.1, showing that the critical points lie
in the convex hull of the points w1, . . . , wr.

Theorem 0.7. 1) Let Ω ∈ RN be a bounded domain and let w1, . . . , wr ∈ RN be r
pairwise distinct points. Consider

f : Ω̄→ R ∪ {−∞}, f(x) =
r∑

k=1

log |x− wk|2.

Then all maxima of f (in Ω̄) are contained in ∂Ω.
2) Moreover, if the closure Ω̄ euqals the convex hull Conv({w1, . . . , wr}) of the points
w1, . . . , wr, then all maxima of f |Ω̄ are contained in ∂Ω \ F , where F is the union
of the interior parts of the faces of ∂Ω of dimension at least two (⇐⇒ all maxima
are contained in one dimensional faces of ∂Ω).

Remark 0.8. Of course it would be interesting from the point of view of physics to
consider also the case of non logarithmic potentials, of the type

f(x) =
r∑

k=1

|x− wk|α.

But it is not clear that one can use methods from complex analysis in this more
general situation.

1. The Hermitian Levi form

Definition 1.1. Let U ⊂ Cn be a domain and let f : U → R be a function, which
is twice continuously differentiable. Moreover, let z0 ∈ U be a point. The Hermitian
form Lf,z0 given by

Lf,z0(w) :=
n∑

i,j=1

∂2f(z0)

∂zi∂z̄j
wiw̄j, w =


w1

w2

.

.

.
wn

 ∈ Cn,
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is called the (Hermitian) Levi form of f at z0.

Here we use the standard formalism: if z = x+ iy, then

∂

∂zj
=

1

2
(
∂

∂xj
− i ∂

∂yj
) ,

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
) .

Then we have the following result related to the Fubini-Study metric.

Lemma 1.2. Let U ⊂ Cn\{0}. Then the Hermitian Levi form Lf,z of f(z) := log |z|2
is positive semidefinite for each 0 6= z ∈ U .
Moreover, at each point 0 6= z ∈ U , the Levi form Lf,z of f at z has positivity n− 1,
and the kernel is the line Cz.

Proof. We denote, for v, w ∈ Cn, the standard Hermitian product by

〈v, w〉 :=
n∑
k=1

vkw̄k.

Then for z ∈ U and w ∈ Cn we have

(3) Lf,z(w) =
n∑

i,j=1

∂2(log(
∑n

k=1 zkz̄k))

∂zi∂z̄j
wiw̄j =

n∑
i,j=1

∂

∂zi
(
zj
|z|2

)wiw̄j =

=
n∑

i,j=1

|z|2δij − z̄izj
|z|4

wiw̄j =
1

|z|4
(|z|2|w|2 − |〈w, z〉|2).

From the Cauchy-Schwartz inequality it follows now

• Lf,z ≥ 0 for all, 0 6= z ∈ U , and
• Lf,z(w) = 0 if and only if w ∈ Cz.

�

We consider now the following situation: let w1, . . . , wr ∈ Cn be r different points
and consider the functions

F : Cn \ {w1, . . . , wr} → R,
respectively

f : Cn \ {w1, . . . , wr} → R
given by

• F (z) :=
∏r

i=1 |z − wi|2 =
∏r

i=1 Fi, respectively
• f(z) :=

∑r
i=1 log |z − wi|2 =

∑r
i=1 fi.

Then we have the following:

Lemma 1.3.

(1) f(z) :=
∑r

i=1 log |z − wi|2 is plurisubharmonic, i.e., Lf,z ≥ 0 for all z 6= 0.
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(2) Lf,z > 0 for all z 6= 0 except if all the points w1, . . . , wr are contained in an
affine complex line.

(3) If w1, . . . , wr are contained in an affine complex line L, then for all z ∈ L the
Levi form Lf,z has exactly nullity 1, in the direction of L.

Proof. If z 6= wk, then the Levi form Lfk,z of fk is ≥ 0 in z and its kernel is the line
C(z − wk) by lemma 1.2. Since

Lf,z =
r∑

k=1

Lfk,z,

we see that

• Lf,z ≥ 0 for all z 6= w1, . . . , wr, and
• v ∈ ker(Lf,z) ⇐⇒ v ∈ C(z − wk) ∀ k = 1, . . . , r.

Therefore Lf,z has non trivial kernel if and only if all the vectors z − w1, . . . , z − wr
are proportional. This holds if and only if there is an element u ∈ Cn such that
w1, . . . , wr ∈ z + Cu.

3) Moreover, if v ∈ ker(Lf,z) \ {0}, v ∈ Cu, i.e., v lies in the direction of L.
�

2. Linear complex structures

Consider now X = R2n together with an R-valued symmetric bilinear form

H : R2n × R2n → R.

Remark 2.1. A complex structure (or a C-structure) on X is a Hodge decomposition

X ⊗R C = V ⊕ V̄ ,
where V ⊂ X ⊗R C is a complex sub(-vector-)space, such that

X = {v + v̄|v ∈ V }.

We can extend H to a symmetric C-bilinear form on X ⊗R C, which we denote by
HC. I.e., for x = v + v̄, y = w + w̄ ∈ X we have: H(x, y) = HC(v + v̄, w + w̄).

More precisely, we get:

(4) H(x, y) = HC(v + v̄, w + w̄) = HC(v, w) +HC(v̄, w̄) +HC(v, w̄) +HC(v̄, w).

Using the above formula, we have the following well known

Lemma 2.2. Let H be a symmetric (real) bilinear form on R2n, endowed with a
given complex structure (i.e., R2n ∼= Cn). Then there is a decomposition

H = Q+ Q̄+ L,
where Q is a symmetric C-bilinear form and L is a Hermitian form.
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Proof. This follows from equation (4) setting Q := HC(v, w) and L := HC(v, w̄) +

HC(v̄, w). Then Q̄(v, w) = HC(v, w) = HC(v̄, w̄). �

Remark 2.3. Let U ⊂ Cn be a domain and let g : U → R be a function, which
is twice continuously differentiable. Applying lemma 2.2 to the Hessian Hg of g in
z ∈ U , we get:

Hg,z = Qg,z + Q̄g,z + 2Lg,z,
where the matrix of Qg,z is given by ( ∂2g

∂zj∂zk
)1≤j,k≤n and Lg,z is the Levi form of g

in z.

Remark 2.4. If the points w1, . . . , wr are contained in a complex line, then from
the formula above (remark 2.3) it follows that the non degenerate critical points of
f(z) :=

∑r
i=1 log |z − wi|2 have negativity 1 (cf. also lemma 1.1. in [CP91]).

3. The case where the real affine span of w1, . . . , wr has dimension ≥ 3

We can prove the following

Proposition 3.1. Consider X = R2n with the standard Euclidean metric and let H
be a symmetric bilinear form with positivity p ≤ 2n− 2. Then there is a C-structure
on X such that

• there is a C-basis v1, . . . , vn (for this C-structure),
• {v1, v̄1, . . . , vn, v̄n} is a unitary basis for the standard Hermitian product on
X ⊗R C ∼= C2n,
• the Levi form HC(v, v̄) is not positive definite.

Proof. Since the positivity p of H fulfills p ≤ 2n − 2, there is an orthonormal basis
e1, . . . , e2n (w.r.t. the Euclidean metric) such that

• H(ei, ej) = 0 for i 6= j,
• if λj := H(ej, ej), then λ1, λ2 ≤ 0.

Set

• v̂j := e2j−1 + ie2j for 1 ≤ j ≤ n, and
• vj := 1√

2
v̂j, 1 ≤ j ≤ n.

Then v1, v̄1, . . . , vn, v̄n is a unitary basis of C2n = X⊗RC endowed with the standard
Hermitian product. Moreover, we have

(5) HC(vj, v̄j) =
1

2
HC(e2j−1 + ie2j, e2j−1 − ie2j) =

1

2
(λ2j−1 + λ2j).

In particular HC(v1, v̄1) ≤ 0. �

As a consequence of the above considerations we get the following:
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Proposition 3.2. Assume that the real affine span of the points w1, . . . , wr ∈ R2n

has (real) dimension ≥ 3. Then at each critical point x of

f(z) :=
r∑
i=1

log |z − wi|2 =
n∑
i=1

fi

the index of positivity is at least 2n− 1.

Proof. Consider the Hessian Hf of f at the critical point x ∈ R2n and assume that
for the positivity p it holds p ≤ 2n− 2. Then by proposition 3.1 there is a complex
structure on X and a C-basis v1, . . . , vn such that {v1, v̄1, . . . , vn, v̄n} is a unitary
basis for the standard Hermitian product on X ⊗R C ∼= C2n and the Hermitian form
Hf,C(v, v̄) in x is not positive definite. But Hf,C(v, v̄) = 2Lf,x(v, v̄), contradicting
lemma 1.3. �

Remark 3.3. In particular, if f :=
∑r

i=1 log |z − wi|2 is a local Morse function, it
has only h local minima in R2n \ {w1, . . . , wr} and exactly (h+ r − 1) other critical
points, each with positivity (2n− 1) and negativity 1.

Remark 3.4. If we assume that the r points w1, . . . , wr ∈ R2n are contained in a
real affine plane, then without loss of generality we may assume:

• X = C× Cn−1,
• w1, . . . , wr ∈ C× {0}, wj = (ξj, 0), ξj ∈ C.

Then

f(z) :=
r∑
i=1

log |z − wi|2 =
n∑
k=1

fk,

where fk(z) = fk(z1, z2) = log(|z1 − ξk|2 + |z2|2), (z1, z2) ∈ C× Cn−1.

4. Geometric properties of f(x) :=
∑r

i=1 log |x− wi|2

We have the following extension of a classical result due to Gauss.

Lemma 4.1. Let w1, . . . , wr be r different points in RN . Then the critical points of

f(x) =
r∑

k=1

log |x− wk|2 =
r∑

k=1

fk

lie in the convex hull of w1, . . . , wr.

Proof. Let x ∈ RN \ {w1, . . . , wr} and set gk(x) := |x− wk|2. Then fk = log gk and

grad(fk)(x) =
2(x− wk)
|x− wk|2

= 2(xk − wk)g−1k (x).
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Therefore x is a critical point of f if an only if

(6)
r∑

k=1

(x− wk)g−1k (x) = 0 ⇐⇒ x
r∑

k=1

g−1k (x) =
r∑

k=1

wkg
−1
k (x) ⇐⇒

⇐⇒ x =

∑r
k=1wkg

−1
k (x)∑r

k=1 g
−1
k (x)

=
r∑

k=1

(
g−1k (x)∑r
k=1 g

−1
k (x)

)wk

Note that for x ∈ RN \ {w1, . . . , wr} we have gk(x) > 0, hence also

tk :=
g−1k (x)∑r
k=1 g

−1
k (x)

> 0,

and
∑r

k=1 tk = 1. This proves the claim. �

Lemma 4.2. Let w1, . . . , wr be r different points in RN . The Hesse matrix of f(x) =∑r
k=1 log |x− wk|2 in x is given by

Hf,x = 2
r∑

k=1

|x− wk|2EN − 2(x− wk)(x− wk)T

|x− wk|4
,

where EN is the N ×N identity matrix and (x−wk)T = (x1−wk,1, . . . , xN −wk,N).

Proof. In fact,

(7) (Hf,x)ij =
r∑

k=1

∂2(log |x− wk|2))
∂xi∂xj

=
r∑

k=1

∂

∂xi
(
2(xj − wk,j)
|x− wk|2

) =

= 2
r∑

k=1

|x− wk|2δij − 2(xj − wk,j)(xi − wk,i)
|x− wk|4

.

�

Corollary 4.3. Assume that the points w1, . . . , wr lie in an affine subspace V . With-
out loss of generality we may assume that we have a decomposition of RN in an
orthogonal direct sum, i.e., RN = V ⊕ V ⊥ where w1, . . . , wr ∈ V .

Then the critical points x of f lie in V and the Hessian of f is of the form
Hf = Hf |V + H ′, where Hf |V is the Hessian of f |V , and H ′ is a positive definite
quadratic form on V ⊥.

Proof. Since the critical points of f lie in the convex hull of the points w1, . . . , wr ∈ V ,
it follows that they also lie in V . It is easy to see that for the statement about the
Hessian it suffices to prove the analogous statement for each summand fk of f . We
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have that the Hessian of fk equals to

Hfk,x = 2(
|x− wk|2EN − 2(x− wk)(x− wk)T

|x− wk|4
).

If x is a critical point of f , then x ∈ V , i.e., x = v + 0 ∈ V ⊕ V ⊥. Then (since also
wk ∈ V , the negative part of the Hessian of fk is zero on V ⊥)

Hfk,x(u1, u2) = Hf |V (u1) + 2|x− wk|2(|u2|2).
�

The above considerations as well as proposition 3.2 allow us now to prove the
following result

Theorem 4.4. Let w1, . . . , wr ∈ RN be r distinct points and let

f : RN \ {w1, . . . , wr} → R
be given by

f(x) =
r∑

k=1

log |z − wk|2.

Then f has only critical points of negativity 0 or 1.

Proof. If N = 2n and the real affine span of w1, . . . , wr has dimension ≥ 3 this
follows from proposition 3.2. If N = 2n − 1 and the real affine span of w1, . . . , wr
has dimension ≥ 3 then, we embed RN in R2n = RN ×R and the claim follows from
proposition 3.2 and corollary 4.3. If instead the real affine span of w1, . . . , wr has
dimension ≤ 2, then we use lemma 1.1. of [CP91] and corollary 4.3.

�

Proof of Theorem 0.2. The first part follows from the above theorem.
To prove the second part we need the following generalized Morse Lemma (cf. e.g.

Satz 5.5 in [Cat99]):

Lemma 4.5. Let Ω ⊂ RN be an open set and let f : Ω → R be a real analytic
function. Let p ∈ Ω be a critical point of f . Assume that the Hessian Hf,p has
positivity index ≥ N − 1. Then there are local coordinates u1, · · · , uN centered at p
such that:

f(u1, · · · , uN) = u21 + · · ·+ u2N−1 + F (uN) ,

where either F (uN) = c± udN , d ≥ 2, or F (uN) ≡ c, c ∈ R.

Denote by C the set of critical points of f and let p ∈ C. Since the positivity of Hf,p

is at least N − 1, we have to consider four cases for p:

• either p is a non-degenerate critical point with negativity 1 or
• p is a non-degenerate local minimum or
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• Hf,p is positive semi-definite, with positivity N − 1, and we can apply the
above generalized Morse lemma since F is real analytic.

Since the critical points near p are solutions of the system of equations
u1 = 0 ,
...

uN−1 = 0 ,

F ′(uN) = 0

p is an isolated critical point if F ′(uN) is not identically zero, and a local
minimum iff d is even and the sign equals +1;
• if F ′(uN) ≡ 0 the set C is near p a 1-dimensional embedded submanifold

defined by the equations u1 = · · · = uN−1 = 0. Moreover, it is clear that the
points of this 1-dimensional submanifold are local minima. Hence a connected
component of C is either an isolated point or a 1-dimensional embedded sub-
manifold consisting of local minima. Since C is compact (because it is closed
and bounded because contained in the convex hull of the points w1, · · · , wr)
the 1-dimensional connected components of C are embedded circles.

�

The following result, which proves a conjecture in computer vision, is now quite
obvious.

Corollary 4.6. (= Theorem 0.7).
1) Let Ω ∈ RN be a bounded domain and let w1, . . . , wr ∈ RN \ ∂Ω be r different
points. Consider

f : Ω̄→ R ∪ {−∞}, f(x) =
r∑

k=1

log |x− wk|2.

Then all maxima of f (in Ω̄) are contained in ∂Ω.
2) Moreover, if Ω̄ = Conv({w1, . . . , wr}) is the convex hull of the points w1, . . . , wr,
then all maxima of f |Ω̄ are contained in ∂Ω\F , where F is the interior of the union
of the faces of ∂Ω of dimension at least two (⇐⇒ all maxima are contained in one
dimensional faces of ∂Ω).

Proof. Without lost of generality we can assume N to be even. The proof of 1) follows
from the fact that f is a plurisubharmonic function w.r.t. any complex structure on
RN compatible with the standard metric. The proof of 2) is by contradiction. Assume
that a local maximum x0 of f |Ω̄ is in the interior of a face A of dimension greater
than one. Then there is a 2-dimensional affine plane Π through x0 contained in A.
As in Proposition 3.2 we can construct a complex structure J compatible with the
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metric of RN such that Π is a complex line w.r.t. J . Then the restriction of f to
Π ∩ A is subharmonic and has a local maximum at the interior point x0. Thus f
must be constant on the affine plane Π. But this is not possible since f(x) goes to
infinity as x ∈ Π goes to infinity. �

5. Symmetries give rise to local minima

Assume that G ≤ O(N) := {A ∈ Mat(N,N,R)|AT = A−1} is a finite subgroup
and that RN is an irreducible G-representation.

We choose a set of points Σ = {w1, . . . , wr} ⊂ RN \ {0} which is a union of
G-orbits. Hence the two functions

• F (x) :=
∏r

i=1 |x− wi|2 =
∏n

i=1 Fi, respectively
• f(x) :=

∑r
i=1 log |x− wi|2 =

∑n
i=1 fi.

are G-invariant functions.
Since the origin 0 ∈ RN is a fixed point of G, and since f is G-invariant, it

follows that Df(0) is also G-invariant. By the irreducibility of (RN)∨ ∼= RN as
G-representation, it follows that Df(0) = 0, i.e., 0 is a critical point of f .

Under the above assumptions we can now prove the following:

Proposition 5.1. Let G ≤ O(N) be a finite subgroup such that RN is an irreducible
G-representation. Suppose that Σ = {w1, . . . , wr} ⊂ RN \ {0} is a union of G-
orbits and that Σ is not contained in an affine plane. Then 0 is a local minimum of
F (x) :=

∏r
i=1 |x− wi|2 resp. of f(x) :=

∑r
i=1 log |x− wi|2.

Proof. If the Hessian Hf,0 of f in 0 is identically zero, then by remark 2.3 the Levi
form Lf,0 is identically zero. Lemma 1.3 implies then that Σ is contained in an
affine plane, a contradiction. Therefore Hf,0 is not identically zero, whence it is
non-degenerate, since otherwise kerHf,0 is a non-trivial G-invariant subspace of RN ,
contradicting the irreducibility of the G-representation.

We know by proposition 3.2 that the positivity of the Hessian Hf at a critical
point is at least N − 1. This means that either

i) H := Hf,0 > 0, or
ii) the positivity of H is N − 1 and the negativity is 1.

In the second case, there are Euclidean coordinates (x1, . . . , xN−1, y) such that (up
to a multiplicative constant), we have

H(x1, . . . , xN−1, y) =
N−1∑
i=1

aix
2
i − y2, ai > 0.
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Then G leaves the cone

C := {x ∈ RN |H(x) = 0} = {(x1, . . . , xN−1, y) ∈ RN |y2 =
N−1∑
i=1

aix
2
i }

invariant. This implies that G leaves invariant the central line L := {(0, . . . , 0, y) ∈
RN |y ∈ R} of C, contradicting the irreducibility of the G-representation. Therefore,
we have seen that H > 0, i.e., f has a local minimum in 0.

�

Remark 5.2. It is not clear that for this choice of points w1, . . . , wr the function
f(z) :=

∑r
i=1 log |z −wi|2 is a local Morse function. At any rate, f is never a global

Morse function, since the critical points appear as orbits of the symmetry group,
hence they do not have different values.

But if f has a local minimum in 0 (as seen above), we shall see in the next section
that, if we perturb the points w1, . . . , wr a little bit, obtaining points w′1, . . . , w

′
r, we

can achieve that

• f(x) :=
∑r

i=1 log |z − w′i|2 is a global Morse function,
• f has a local and not global minimum.

6. The configuration space

We go back to the notation defined in the introduction, see definition 0.5.
GL(r,N) is the open set in the space (RN)rof r (distinct) points in RN , such that
the function f(x) =

∑r
k=1 log |x − wk|2 is a global Morse function, i.e. we have a

generic big lemniscate configuration Γ(f).

Proposition 6.1. The complement

Y := (RN)r \ GL(r,N)

is a real semi-algebraic set different from (RN)r, in particular the open set GL(r,N)
is non empty.

Proof. It is sufficient to consider the conditions that say that w := (w1, . . . , wr) ∈
GL(r,N). The condition that the points wj are pairwise distinct amount to the fact
that w /∈ ∆i,j := {w|wi = wj}.
Observe that ∆i,j is a linear subspace of codimension N .

The condition that F is a (local) Morse function is the condition that all critical
points are nondegenerate. To this purpose, we consider as customary the critical
variety:

CR := {(x,w)|x ∈ RN , w ∈ (RN)r \ ∪i<j∆i,j,
∂F

∂xj
(x,w) = 0 ∀j = 1, . . . , N.}
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Here F (x,w) is the real polynomial
∏r

1 |x− wj|2.
Clearly CR is defined by N polynomial equations, so it is a real algebraic set, and

its projection to (RN)r \ ∆ := (RN)r \ ∪i<j∆i,j is proper by lemma 4.1. Now, the

equation ∂F
∂xj

(x,w) = 0 ∀j = 1, . . . , n is equivalent to the equation ∂f
∂xj

(x,w) = 0 ∀j =

1, . . . , n if x /∈ Σ = {w1, . . . , wr}, hence to the vanishing of the gradient gradx f(x,w)
with respect to the variable x of the function f(x,w).
We change now variables setting −uj := (x− wj).

Given, the function gradx f(x,w), the derivative with respect to the variable wi of
this vector valued function,

∂

∂wi
[gradx f(x,w)] =

∂

∂wi
[
x− wi
|x− wi|2

]

equals to the derivative with respect to the variable ui of the function ui
|ui|2 .

But the derivative of the vector valued function u
|u|2 is given by the matrix of the

quadratic form (on tangent vectors v) 1
|u|4 [(u, u)(v, v)− 2(u, v)(u, v)]. We restrict to

the open set u 6= 0, and without loss of generality, by homogeneity, we can assume
|u| = 1 and indeed, after a change of orthonormal basis, that u = e1. Then the
quadratic form becomes

|v|2 − 2(e1, v)2 = −v21 + v22 + . . .+ v2N ,

which is non degenrate.
We have therefore established that CR is smooth of codimension N outside of the

locus where x = wi. However, the points x = wi are isolated critical points of F .
Hence the locus of CR where the projection π : CR → (RN)r is not a submersion

(being a submersion means that the derivative is surjective) is a closed algebraic set
and its image in (RN)r, by the Tarski-Seidenberg theorem (cf. [Jac74], page 323 for
an elementary proof), and by Sard’s theorem, is a semialgebraic set of dimension
strictly smaller than Nr.

Now, the key well known fact is that the isolated critical points of the function F
are exactly the points of CR where the projection π : CR → (RN)r is a submersion.

The final condition that f be a global Morse function runs as follows: we have a
non empty open set for which F , hence f , is a local Morse function; this set is the
complement of the above semialgebraic set, that we denote by L(r,N) (observe that
for an r-tuple of points in L(r,N) the singular level sets may contain more than one
singular point).

Over the open set L(r,N) the critical points are a finite set, and the condition
that fw (fw(x) = f(x,w)) is a global Morse function is that the values of Fw on
the critical points which are not in Σ are pairwise distinct. We are thus removing
another closed semialgebraic set.
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That GL(r,N) is non empty follows by considering points w1, . . . , wr which lie in
R2. Using a complex structure where R2 = C, we reduce using corollary 4.3 to the
case of polynomial lemniscates on C, dealt with in [CP91].

�

Proposition 6.2. Assume that GL(r,N) is everywhere dense, equivalently, its com-
plementary set is a semialgebraic set of real dimension < Nr.

Then, given an r-tuple w ∈ (RN)r of points w1, . . . , wr ∈ RN (yielding a set of
points Σw := {w1, . . . , wr} ⊂ RN) such that

• fw(x) :=
∑r

i=1 log |z − wi|2 is a local Morse function,
• fw has h local minima in RN \ Σw,

then for each δ > 0, there is another r-tuple of points w′1, . . . , w
′
r, with |w′i − wi| < δ

such that

• fw′(x) :=
∑r

i=1 log |z − w′i|2 is a global Morse function,
• fw′ has h local minima in RN \ Σw′,

Proof. The second assertion follows from the first, since we can find an r-tuple w′

very close to w and lying in GL(r,N).
Then, for δ sufficiently small, the difference |fw − fw′| is smaller, on any given

compact K containing the convex hull of the set Σw, than any given ε > 0, provided
|w′i − wi| < δ.

Let now y be a local minimum for fw which is not a global minimum. Then there
is a constant r such that the closed ball B(y, r) contains no other critical points,
and, for x ∈ ∂B(y, r/2), fw(x) > fw(y) + 2ε(y), where ε(y) > 0 is a constant.

Set ε := minyε(y) and choose δ as above: then fw′ still possesses a local minimum

inside B(y, r/2).
�

Proposition 6.3. GL(r,N) is everywhere dense.

Proof. Assume the contrary: then there is a connected component U of L(r,N) which
has empty intersection with GL(r,N) and such that it has a common boundary M
with a connected component U ′ of GL(r,N).

Take a general point w of the common boundary M , and take an analytic arc
I transversal to M at w; apply the following two lemmas 6.4 and 6.5. Then the
inverse image J of I inside the critical variety CR consists of several arcs Jh which
map homeomorphically to I, plus there is (possibly) another arc J ′ which maps with
degree 2 to the part of I lying in one of the two domains U , respectively U ′.

Set IU := I ∩ U , and similarly IU ′ := I ∩ U ′. By the hypothesis, there are two
arcs A,B of IU on which the critical values are the same; by analytic continuation,
these arcs A,B cannot both respectively be part of two arcs of the form Jh. Hence
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one, say A, of them lies in the arc J ′. By lemma 6.5 B cannot lie in an arc of the
form Jh, otherwise, by analytic continuation, the critical values on Jh ∩ IU ′ would be
imaginary. Finally, the possibility that both arcs A,B lie in J ′ contradicts lemma
6.5 .

�

Lemma 6.4. Assume that we have a degenerate critical point of the function f = fw,
where there are local coordinates (u1, . . . , uN) such that

f(u) = u21 + · · ·+ u2N−1 + c+ ηu3N ,

where η = ±1.
Then for w′ in a neighbourhood of w we have a deformation of f of the form

fw′(u) = u21 + · · ·+ u2N−1 + c′ + ηu3N + t(w′)uN ,

for t(w′) an appropriate analytic function of w′.
The critical point u = 0 deforms to two real nondegenerate critical points

u1 = u2 = · · · = uN−1 = 0,
√

3uN =
√
−ηt(w′)

for the points w′ where the function ηt(w′) is negative, and to two imaginary critical
points for the points w′ where the function ηt(w′) is positive.

In particular, the critical values of the function fw′ at the two real critical points
are distinct as soon as the points are distinct (i.e., for t(w′) 6= 0); while the critical
values at the imaginary critical points are non real.

Lemma 6.5. The locus of r-tuples w such that fw has at least two degenerate singular
points (counted with multiplicity) has codimension at least 2.

We shall provide the proof of the above lemmas in another paper.

Remark 6.6. In the next section we shall give explicit examples, first of the situation
in Proposition 5.1, then of cases where one has many local (non global) minima, and
we show that in these examples f is in fact a local Morse function (but never a global
Morse function).

7. Examples

In this section we give some explicit examples of points {w1, . . . , wr} ⊂ RN , such
that f(x) :=

∑r
i=1 log |z − wi|2 has one or more local minima in RN \ Σ.
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7.1. The hypercube. Let N ≥ 3 be a natural number and consider the midpoints
of the big faces of the hypercube, i.e., the points P1, P2, . . . , P2N ∈ RN , with

Pi := ei, PN+i := −ei, 1 ≤ i ≤ N.

Here ei is the i-th standard basis vector of RN . Let

F (x) :=
N∏
i=1

|x− ei|2|x+ ei|2.

Proposition 7.1. Then F has 2N absolute minima in the points x = ±ei, 1 =
1, . . . , n, a local minimum in x = 0 and 2N non degenerate critical points of negativity

1 in x = ±
√

N−2
N
ei.

In fact,

(8)

F (x) = F (x1, . . . , xN) = ((x1 − 1)2 + x22 + . . .+ x2N)((x1 + 1)2 + x22 + . . .+ x2N)·
· (x21 + (x2 − 1)2 + . . .+ x2N)(x21 + (x2 + 1)2 + . . .+ x2N) · . . . ·
· (x21 + x22 + . . .+ (xN − 1)2)(x21 + x22 + . . .+ (xN − 1)2) =

= (x21 − 2x1 + 1 + x22 + . . .+ x2N)(x21 + 2x1 + 1 + x22 + . . .+ x2N) · . . .
· . . . · (x21 + x22 + . . .+ x2N − 2xN + 1)(x21 + x22 + . . .+ x2N + 2xN + 1) =

= 1 + 2(N − 2)(x21 + x22 + . . .+ x2N) + f≥3(x).

Here f≥3(x) ∈ R[x1, . . . , xN ] is a sum of monomials of order ≥ 3. This implies that
for N ≥ 3, F has a local minimum in x = 0.

In order to prove the above proposition, it suffices to prove the following two
lemmata.

Lemma 7.2. If x = λei, then x is a critical point of F if and only if λ = ±1 or

λ = ±
√

N−2
N

.

Proof. We define for 1 ≤ i ≤ N : Fi(x) := |x− ei|2|x+ ei|2. Then it is easy to verify
that

∂Fi
∂xj

(x) =

{
4xi(x

2
1 + . . .+ x2N − 1), i = j,

4xj(x
2
1 + . . .+ x2N + 1), i 6= j.

This implies that

∂F

∂xi
(x) = 4xi

[
(|x|2 + 1)

N∑
k=1

F1 · . . . · F̂k · . . . · FN − 2F1 · . . . · F̂i · . . . · FN

]
,

for i = 1, . . . , N .
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Remark 7.3. It is clear that gradF (x) = 0 for x = 0 and x = ±ei.

Therefore from now on we assume that x 6= 0 and λ 6= ±1.
Observe that for xi 6= 0, ∂F

∂xi
(x) = 0 if and only if

Ai(x) := (|x|2 + 1)
N∑
k=1

F1 · . . . · F̂k · . . . · FN − 2F1 · . . . · F̂i · . . . · FN = 0.

Due to the symmetry we can assume wlog that x = λe1, λ 6= 0, 1,−1. Then
∂F
∂xj

(x) = 0, for j = 2, . . . , N and

(9) A1(x) = 0 ⇐⇒ (1− λ2)F2 · · · . . . · FN = (1 + λ2)
N∑
k=2

F1 · . . . · F̂k · . . . · FN

⇐⇒ (1− λ2)(λ2 + 1)2(N−1) = (N − 1)(1 + λ2)((λ− 1)2(λ+ 1)2(λ2 + 1)2(N−2)

⇐⇒ λ2 = ±N − 2

N
.

�

Lemma 7.4. Let x ∈ RN and assume that there are 1 ≤ i < j ≤ N such that
xi 6= 0 6= xj. Then gradF (x) 6= 0.

Proof. We assume that x ∈ RN such that there is k ≥ 2 there are 1 ≤ i1 < . . . < ik ≤
N such that xij 6= 0, xj = 0 otherwise. For reasons of symmetry we again suppose
wlog that xi 6= 0 for 1 ≤ i ≤ k and xi = 0 otherwise, i.e.,

x = (x1, . . . , xk, 0, . . . , 0).

Then

∂F

∂xi
(x) = 0 ⇐⇒ (|x|2 + 1)

N∑
k=1

F1 · . . . · F̂k · . . . · FN = 2F1 · . . . · F̂i · . . . · FN ,

for i = 1, . . . , k. Since Fi(x) 6= 0 for all i, this implies that F1(x) = . . . = Fk(x). We
have

Fi(x) = |x|4 + 2|x|2 − (4x2i − 1),

whence a := x21 = . . . = x2k. Now we can write

Fi(x) =

{
(ka)2 + (2k − 4)a+ 1 =: P, 1 ≤ i ≤ k,

(ka+ 1)2 =: Q, k < i ≤ N.

This implies

A1(x) = (1 + ka)
(
kP k−1QN−k + (N − k)P kQN−k−1)− 2P k−1QN−k =
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= ((1 + ka)k − 2)P k−1QN−k + (1 + ka)(N − k)P kQN−k−1.

The last expression is clearly strictly positive for k ≥ 2, since a > 0 and P,Q > 0.
�

Here we compute the Hesse matrix of f = log(F ) at the critical points ±λei,
λ =

√
N−2
N

. Actually, due to the symmetry, it is enough to compute Hf,x at the

point x = λe1.
By Lemma 4.2 we have

Hf,λe1 = 2
r∑

k=1

|λe1 − wk|2EN − 2(λe1 − wk)(λe1 − wk)T

|λe1 − wk|4

For 1 < i 6= j we have

(Hf,λe1)ij = 2
r∑

k=1

eTi |λe1 − wk|2ENej − 2eTi (λe1 − wk)(λe1 − wk)T ej
|λe1 − wk|4

= 2
r∑

k=1

−2eTi (λe1 − wk)(λe1 − wk)T ej
|λe1 − wk|4

= 0.

For 1 < j we have

(Hf,λe1)1j = 2
r∑

k=1

eT1 |λe1 − wk|2ENej − 2eT1 (λe1 − wk)(λe1 − wk)T ej
|λe1 − wk|4

= 2
r∑

k=1

−2eT1 (λe1 − wk)(λe1 − wk)T ej
|λe1 − wk|4

= 2
r∑

k=1

2(λ− eT1wk)wTk ej
|λe1 − wk|4

= 2

(
2

λ

|λe1 − ej|4
+ 2

λ(−1)

|λe1 + ej|4

)
= 0.

In particular, we see that Hf,x at the point x = λe1 is diagonal.
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(Hf,λe1)11 = 2
r∑

k=1

eT1 |λe1 − wk|2ENe1 − 2eT1 (λe1 − wk)(λe1 − wk)T e1
|λe1 − wk|4

= 2
r∑

k=1

|λe1 − wk|2 − 2eT1 (λe1 − wk)(λe1 − wk)T e1
|λe1 − wk|4

= 2

( ∑
wk 6=±e1

(λ2 + 1)− 2λ2

(λ2 + 1)2
+

(λ− 1)2 − 2(λ− 1)2

(λ− 1)4
+

(λ+ 1)2 − 2(λ+ 1)2

(λ+ 1)4

)

= 2

(
(2N − 2)

1− λ2

(1 + λ2)2
− 2

λ2 + 1

(λ2 − 1)2

)
= −2N2N − 2

N − 1
.

For 1 < i a similar computation shows that

(Hf,λe1)ii = 2N2

(
(N2 − 2N − 2)

2N(N − 2)2
+
N − 1

N

)
Summing up we get

Hf,λe1 ∼ diag(−2N2, 2N2, · · · , 2N2)

as N →∞.

7.2. Three elementary examples in R3.
1) Consider the four vertices w1 = e1, w2 = e2, w3 = e3, w4 = e1 + e2 + e3 of the
regular symplex in R3.

Here

F (x) :=
4∏
i=1

|x− wi|2.

has four absolute minima in w1, w2, w3, w4, a local minimum in the barycenter B :=
1
2
w4 and 4 non degenerate critical points (of negativity 1) in

yi :=
1

3
wi +

2

3
B, 1 ≤ i ≤ 4.

2) Consider the following eight vertices of the regular cube in R3:

{w1, . . . , w8} = {0, e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3}.

F (x) :=
8∏
i=1

|x− wi|2.

Then F has eight absolute minima in w1, . . . , w8, a local minimum in 1
2
w8 and

further 8 non degenerate critical points (of negativity 1).
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3) Consider the following six points in R3:

{w1, . . . , w6} = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3}.

F (x) :=
6∏
i=1

|x− wi|2.

Then F has eight absolute minima in w1, . . . , w6, a local minimum in 1
2
(e1+e2+e3)

and further 6 non degenerate critical points (of negativity 1).

7.3. The regular triangular prism: an example with two local minima.
Fix a ∈ R+ and consider the following six points: wj := (uj, a), w′j := (uj,−a) ∈

C× R = R3, where for 1 ≤ j ≤ 3 we set uj := ej
2πi
3 . Set

Fa(x) :=
3∏
j=1

|x− wj|2 · |x− w′j|2.

Fa has six absolute minima in the points wj, w
′
j.

We shall prove the following

Proposition 7.5.

(1) a = 1: F1 has a critical point in 0, whose Hessian has nullity 1 (and positivity
two).

(2) a < 1: Fa has a local minimum in 0 with non degenerate Hessian and no
further critical points of the form (0, 0, x3).

(3) a > 1: Fa has a non degenerate critical point in 0 with negativity 1, and two
local minima in (0, 0,±

√
a2 − 1) .

Then we have:

w1 = (−1

2
,

√
3

2
, a), w2 = (−1

2
,−
√

3

2
, a), w3 = (1, 0, a);

w′1 = (−1

2
,

√
3

2
,−a), w′2 = (−1

2
,−
√

3

2
,−a), w′3 = (1, 0,−a).

Moreover, write F : = F1 · F2 · F3, where

Fj := |x− wj|2 · |x− w′j|2.
Defining

g1(x) : = (x1 +
1

2
)2 + (x2 −

√
3

2
)2 + (x23 − a2),

g2(x) : = (x1 +
1

2
)2 + (x2 +

√
3

2
)2 + (x23 − a2),

g3(x) : = (x1 − 1)2 + x22 + (x23 − a2),
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it is easy to verify that

(10)
∂Fa
∂x1

(x) = 4(x1 +
1

2
)g1(x)F2(x)F3(x)+

+ 4(x1 +
1

2
)g2(x)F1(x)F3(x) + 4(x1 − 1)g3(x)F1(x)F2(x),

(11)
∂Fa
∂x2

(x) = 4(x2 −
√

3

2
)g1(x)F2(x)F3(x)+

+ 4(x2 +

√
3

2
)g2(x)F1(x)F3(x) + 4x2g3(x)F1(x)F2(x),

(12)
∂Fa
∂x3

(x) = 4x3 (g1(x)F2(x)F3(x) + g2(x)F1(x)F3(x) + g3(x)F1(x)F2(x)) .

Remark 7.6. One sees immediately that ∂Fa
∂x3

(x) = 0 if and only if x3 = 0 or

g1(x)F2(x)F3(x) + g2(x)F1(x)F3(x) + g3(x)F1(x)F2(x) = 0.

We assume now that x = (0, 0, x3). Then

(13)
∂Fa
∂x1

(x) = 2(1 + x23 − a2)(1 + (x3 − a)2)2(1 + (x3 + a)2)2+

+ 2(1 + x23 − a2)(1 + (x3 − a)2)2(1 + (x3 + a)2)2−
− 4(1 + x23 − a2)(1 + (x3 − a)2)2(1 + (x3 + a)2)2 = 0, ∀x3, ∀a.

Similarly, one verifies that ∂Fa
∂x2

(x) = 0, ∀x3, ∀a. Moreover, we have that ∂Fa
∂x3

(0, 0, x3) =
0 if and only if x3 = 0 or if

(14) 0 = g1(x)F2(x)F3(x) + g2(x)F1(x)F3(x) + g3(x)F1(x)F2(x) =

= 3(1 + x23 − a)(1 + (x3 + a)2)2(1 + (x3 − a)2)2 ⇐⇒ x23 = a2 − 1.

Therefore we have shown the following

Lemma 7.7.

(1) If a ≤ 1, then gradFa(0, 0, x3) = 0 ⇐⇒ x3 = 0.
(2) If a > 1, then gradFa(0, 0, x3) = 0 ⇐⇒ x3 ∈ {(0, , 0, 0), (0, 0,±

√
a2 − 1)}.

We shall now calculate the Hessian of fa = logFa in (0, 0, 0) and for a > 1 in
(0, 0,±

√
a2 − 1). In fact, we prove the following:
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Lemma 7.8. For x = (0, 0, t) we have

(15) Hfa,x =
6

(1 + (t− a)2)2

(t− a)2 0 0
0 (t− a)2 0
0 0 1− (t− a)2

+

+
6

(1 + (t+ a)2)2

(t+ a)2 0 0
0 (t+ a)2 0
0 0 1− (t+ a)2

 .

Proof. Note that |x−wk|2 = 1 + (t− a)2 and |x−w′k|2 = 1 + (t+ a)2 for 1 ≤ k ≤ 3.
Using the formula for the Hesse matrix in Lemma 4.2 one can verify the claim. �

We can now give a proof for Proposition 7.5.

Proof. One sees immediately that

Hfa,0 =
12

(1 + a2)2

a2 0 0
0 a2 0
0 0 1− a2

 .

From this one sees immediately that the Hesse matrix iin 0 is degenerate for a = 1,
positive definite for a < 1 and has negativity 1 for a > 1.
It remains to verify that for a > 1 and x = (0, 0,±

√
a2 − 1) the Hesse matrix Hfa,x

is positive definite. From the formula above we see (since the first two entries of the
diagonal are automatically positive) that it suffices to show that for t2 = a2 − 1

(16)
6

(1 + (t− a)2)2
(1− (t− a)2) +

6

(1 + (t+ a)2)2
(1− (t+ a)2) > 0.

For this observe that setting λ := (t− a)2, we have that 1
λ

= (t+ a)2. Therefore the
left hand side of equation 16 becomes

(17)
6

(1 + (t− a)2)2
(1− (t− a)2) +

6

(1 + (t+ a)2)2
(1− (t+ a)2) =

=
1− λ

(1 + λ)2
+

1− 1
λ

(1 + 1
λ
)2

=
1− λ

(1 + λ)2
+

λ2 − λ
(1 + λ)2

=
(1− λ)2

(1 + λ)2
> 0.

This proves Proposition 7.5 �

8. 3h points on an equilateral triangular prism, with h preassigned
local (non absolute) minima

Let r1 < r2 < · · · < rh be arbitrary real numbers, h > 1. We are going to construct
3h points w1, w2, · · · , w3h ∈ R3 such that F (x) =

∏3h
j=1 |x − wj|2 has h local (non
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absolute and non degenerate) minima at the points (0, 0, rj), j = 1, · · · , h.

Actually, F is going to have also h − 1 saddles (non degenerate critical points of
negativity 1) on the x3-axis.

8.1. The auxiliary polynomial P . Given the rj’s take sj such that rj < sj < rj+1

for j = 1, · · · , h− 1. Let P (X) be the polynomial

P ′(X) =

(
h−1∏
j=1

(X − rj)(X − sj)

)
(X − rh) .

Then deg(P ) = 2h and P (X) is bounded from below. So we can assume w.l.o.g.
that P (X) > 0 for all X ∈ R.
By construction P (X) has h local minima at the rj’s and h− 1 local maxima at the
sj’s.

Decompose P (X) as

P (X) =
h∏
j=1

Pj(X)

where Pj(X) are degree two monic real polynomials without real roots. Observe that
Pj 6= Pk for j 6= k otherwise the derivative would have a double root, contradicting
our construction of P ′(X).

We can also assume w.l.o.g. that Pj(X) > 0 for all X ∈ R.
Hence there are real numbers aj, bj ∈ R such that

Pj(X) = (X − aj)2 + b2j

and we can assume that bj > 0.

Summing up we have:

(18) P (X) =
h∏
j=1

(
(X − aj)2 + b2j

)
8.2. The 3h points w1, . . . , w3h.

We regard now R3 as C× R. For each j ∈ {1, · · · , h} we consider the following 3
points w1

j , w
2
j , w

3
j defined as follows:

wij := (ξibj, aj)
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where ξ = e
√
−1 2π

3 and the aj, bj’s are as in the factorization of P (X) given in equation
(18).

Proposition 8.1. Let F (x) :=
∏h

j=1 |x− w1
j |2|x− w2

j |2|x− w3
j |2. Then:

(1) F has h local (non absolute) nondegenerate minima in (0, rj) ∈ C × R, 1 ≤
j ≤ h;

(2) F has h − 1 saddle points (nondegenerate critical points of negativity 1) in
the points (0, sj), 1 ≤ j ≤ h− 1;

(3) F has 3h absolute minima in the points wij, 1 ≤ j ≤ h, 1 ≤ i ≤ 3;

Proof.
Step I: The h+ h− 1 points (0, rj) and (0, sj) are critical points of F .

To see this write x = (z, t) so that

F (x) = F (z, t) =
h∏
j=1

(
|z − ξbj|2 + (t− aj)2

) (
|z − ξ2bj|2 + (t− aj)2

) (
|z − bj|2 + (t− aj)2

)
hence

F (ξz, t) = F (z, t).

I.e., F is invariant for the 120 degree rotation on the first factor C.
This implies that the gradient ∇F at the points (0, rj) and (0, sj) has zero C-

component. The R-component of ∇F is then dF (0,t)
dt

. Now

F (0, t) =
h∏
j=1

(
b2j + (t− aj)2

) (
b2j + (t− aj)2

) (
b2j + (t− aj)2

)
= P (t)3

where P is as in equation (18). So, as we claimed, dF (0,t)
dt

is zero at the rj’s and s′js.

Step II: At each critical point of the form (0, rj) and (0, sj) the Hessian matrix
HF has both factors C and R as invariant subspaces. Moreover HF |C = λIdC, for
λ ∈ R. Let in fact R120 : R3 → R3 be the rotation of 120 degrees, induced by the
multiplication by ξ on the first factor C. Then, as observed above, F ◦ R120 = F .
The critical points (0, rj) and (0, sj) are fixed by R120 hence:

R120HF,p = HF,pR120

where p ∈ {(0, rj), (0, sj)}. Since the R factor is the unique fixed line by R120 it
follows that HF,p preserves the R line hence HF,p also preserves C. The Z3-action
generated by R120 is irreducible on C. It follows that HF |C = λIdC as we claimed.

Step III: The points (0, rj) are local (non absolute) minima of F whilst HF has
negativity 1 and is nondegenerate at the points (0, sj). Since h > 1 the 3h points
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are not coplanar. So at each critical point p ∈ {(0, rj), (0, sj)} the constant λ in the
first block of the Hessian matrix HF,p must be positive, i.e. λ > 0. The constant in
the R direction is given by

d2F (0, t)

dt2
=

d2(P (t)3)

dt2

By construction P (X) has non degenerate local minima at the rj’s and non de-
generate local maxima at the sj’s. Since P > 0 the cubic power does not change
the sign of the derivatives and we get that also F (0, t) has has non degenerate local
minima at the rj’s and non degenerate local maxima at the sj’s. �

Remark 8.2. One can show that, for general choice of the numbers rj, sj, F has
exactly 3h further saddle points (nondegenerate critical points of negativity 1).

Figure 3. Several lemniscates of a perturbation of the configuration
for r = 15 constructed with the method of this section.

9. Appendix

We give here a further concrete example.

9.1. The vertices of the regular simplex in RN .
Let N ≥ 4 be a natural number and consider w1, w2, . . . , wN ∈ RN , where

wi := ei, 1 ≤ i ≤ N.
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Here ei is the i-th standard basis vector of RN . Let

F (x) :=
N∏
i=1

|x− ei|2

and f(x) := log(F (x)).

Proposition 9.1. Then F has N absolute minima in the points x = ei, i = 1, . . . , N ,
a local minimum in x = B := 1

N

∑N
i=1 ei and N non degenerate critical points of

negativity 1 in Qi := 2
N−1B + N−3

N−1ei, i = 1, . . . , N .
More precisely, Hf,B has two eigenvalues:

• 2N3

N(N−1) with multiplicity 1 whose eigenvector is parallel to B and

• 2(N − 3)( N
N−1)2 with multiplicity N − 1.

The Hessian matrix Hf,Qi has three eigenvalues:

• − (N−3)N2

2(N−2) has multiplicity one with eigenvector B − ei,
• (N−1)N2

2(N−2) with multiplicity one with eigenvector B, and

• 8+(−3+N)N(4+N2)
2(−2+N)2

with multiplicity (N − 2).

Proof. That the N points ei, i = 1, . . . , N are absolute minima follows from the very
definition of F . A critical point x 6= ei of F satisfies:

N∑
i=1

x− ei
|x− ei|2

= 0

taking scalar product with ej we get

N∑
i=1

xj − δij
|x− ei|2

= 0 .

Then

xjΣ−
1

|x− ej|2
= 0

where Σ :=
∑N

i=1
1

|x−ei|2 . Hence the coordinates xj (of the critical point x) are roots

of the following polynomial P (X):

P (X) = X2 − (|x|2 + 1)

2
X +

1

2Σ
= (X − α)(X − β) .

Due to the symmetry we can assume that

x = (α, · · · , α︸ ︷︷ ︸
a−times

, β, · · · , β︸ ︷︷ ︸
(N−a)−times

) .
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with a > 1. This implies

(19)


α + β = |x|2+1

2
,

aα2 + (N − a)β2 = |x|2,
aα + (N − a)β = 1

The last equality is due to the fact that x must be in the convex hull of the N
points ei, i = 1, . . . , N .

If a = N then α = 1
N

and x = B = 1
N

(1, · · · , 1).

Now assume that 1 < a ≤ N − 1. From the equations (19) we get the following
quadratic equation for β:

(1− (N − a)β)

a
+ β =

a( (1−(N−a)β)
a

)2 + (N − a)β2 + 1

2

2− 2(N − a)β + 2aβ = (1− (N − a)β)2 + a(N − a)β2 + a

2 + 2aβ = ((N − a)β)2 + 1 + a(N − a)β2 + a

so

2 + 2aβ = (N − a)Nβ2 + a+ 1

or

0 = (N − a)Nβ2 − 2aβ + (a− 1)

then

β =
2a±

√
4a2 − 4N(N − a)(a− 1)

2N(N − a)
.

Now for N ≥ 4 and 1 < a < N − 1 the discriminant a2 − N(N − a)(a − 1) is
negative. It follows that a = N − 1 hence

x = (α, α, · · · , α, β)

where

β =
(N − 1)±

√
(N − 1)2 −N(N − 2)

N
=

(N − 1)± 1

N

So there are two possibilities β = 1, α = 0 or β = N−2
N
, α = 2

N(N−1) . The first one

corresponds to x = eN is excluded, since we assumed x 6= ei, i = 1, · · · , N . Then

x = (
2

N(N − 1)
,

2

N(N − 1)
, · · · , 2

N(N − 1)
,
N − 2

N
)
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or

x =
2

N − 1
B +

N − 3

N − 1
eN .

This shows that the critical points of F are exactly: B, Qi := 2
N−1B + N−3

N−1ei and
ei, i = 1, . . . , N .

The Hesse matrix of f(x) = log(F (x)) at B is by Lemma 4.2:

Hf,B = 2
N∑
k=1

|B − ek|2EN − 2(B − ek)(B − ek)T

|B − ek|4
,

Let ξ1, ξ2, · · · , ξN−1, ξN be an orthonormal base of RN such that ξN = B
|B| . We are

going to compute the Hesse matrix w.r.t. this base.
Then for 1 ≤ i 6= j < N we have

(Hf,B)ij = 2
N∑
k=1

−2
ξTi (B − ek)(B − ek)T ξj

|B − ek|4
= 2

N∑
k=1

−2
〈ξi, ek〉〈ξj, ek〉

λ4
=
−4

λ4
〈ξi, ξj〉 = 0

where λ := |B − ek| =
√
N(N−1)
N

. For 1 ≤ i < N we have

(Hf,B)iN = 2
N∑
k=1

−2
〈ξi, (B − ek)〉〈ξN , (B − ek)〉

λ4
=
−4

λ4

N∑
k=1

〈ξi, (B − ek)〉〈ξN , (B − ek)〉 =

=
−4

λ4

N∑
k=1

〈ξi,−ek〉 (〈ξN , B〉 − 〈ξN , ek〉) =
−4

λ4

(
〈ξi, ξN〉+

N∑
k=1

〈ξi,−ek〉〈ξN , B〉

)
=

=
−4

λ4

(
〈ξi,−

N∑
k=1

ek〉〈ξN , B〉

)
=
−4

λ4
〈ξi,−NB〉〈ξN , B〉 = 0

This shows that w.r.t. the basis ξ1, ξ2, · · · , ξN−1, ξN the Hesse matrix Hf,B is di-
agonal.

Now for 1 ≤ i < N

(Hf,B)ii = 2
N∑
k=1

λ2 − 2ξTi (B − ek)(B − ek)T ξi
λ4

= 2
N∑
k=1

λ2 − 2〈ξi, ek〉〈ξi, ek〉
λ4

=

= 2
N∑
k=1

λ2 − 2〈ξi, ek〉〈ξi, ek〉
λ4

= 2
N

λ2
− 4

N∑
k=1

〈ξi, ek〉〈ξi, ek〉
λ4

= 2
N

λ2
− 4

λ4
= 2(N − 3)(

N

N − 1
)2.
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and

(Hf,B)NN = 2
N∑
k=1

λ2 − 2〈(B − ek), ξN〉2

λ4
= 2

N∑
k=1

λ2 − 2 (|B| − 〈ek, ξN〉)2

λ4
=

=
2N

λ2
− 4

λ4

N∑
k=1

(
|B|2 − 2|B|〈ek, ξN〉+ 〈ek, ξN〉2

)
=

=
2N

λ2
− 4

λ4
(
N |B|2 − 2|B|〈NB, ξN〉+ 1

)
=

2N

λ2
− 4

λ4
(
N |B|2 − 2N |B|2 + 1

)
=

2N

λ2
=

2N3

N(N − 1)

To compute Hf,Q1 we will use the standard orthogonal representation of the sym-
metric group ρ : SN → O(N). It is well-known that RN = RB⊕W is an orthogonal
SN -invariant sum and SN acts irreducibly on W. Let (SN)e1 be the isotropy sub-
group of e1. Then (SN)e1 fixes the critical point Q1. The tangent space TQ1RN splits
as TQ1RN = spanR{B, e1} ⊕ V where the sum is orthogonal and (SN)e1 acts irre-
ducibly on V. It follows thatHf,Q1(V) ⊂ V andHf,Q1(spanR{B, e1}) ⊂ spanR{B, e1}.
Observe that the vector B is an eigenvector of Hf,Q1 . This follows by comput-

ing ∂2f
∂ξiξN

w.r.t. the coordinates given by the orthogonal base ξ1, ξ2, · · · , ξN−1, ξN
where ξN = B

|B| , since the set of points e1, · · · , eN is contained in the affine space∑N
k=1 xk = 1. So from this direct computation we get:

Hf,Q1(ξN) =

(
N∑
k=1

2

|Q1 − ek|2

)
ξN =

=

(
2

|Q1 − e1|2
+ (N − 1)

2

|Q1 − e2|2

)
ξN =

(N − 1)N2

2(N − 2)
ξN

We define ξ1 := e1−B
|e1−B| so that spanR{B, e1} = spanR{ξN = B

|B| , ξ1}. Then

Hf,Q1(ξ1) = µξ1,
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where

µ = 2
|Q1 − e1|2 − 2〈ξ1, Q1 − e1〉2

|Q1 − e1|4
+ 2

N∑
k=2

|Q1 − ek|2 − 2〈ξ1, Q1 − ek〉2

|Q1 − ek|4

= 2
|Q1 − e1|2 − 2〈ξ1, Q1 − e1〉2

|Q1 − e1|4
+ 2(N − 1)

|Q1 − e2|2 − 2〈ξ1, Q1 − e2〉2

|Q1 − e2|4

= −(N − 3)N2

2(N − 2)

and

Hf,Q1|V = νEV,

where EV is the identity of EV due to the irreducibility of the action of (SN)e1 on V.
To compute ν we use the value trace(Hf,Q1) = N−1

2(4+N2)
which is not difficult to

compute w.r.t. the canonical basis e1, · · · , eN . Then

ν =
trace(Hf,Q1)− µ−

(N−1)N2

2(N−2)

N − 2
=

8 + (−3 +N)N (4 +N2)

2(−2 +N)2

�
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