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Abstract
We generalize a result of Fujita, on the decomposition of Hodge bundles over curves,
to the case of a higher dimensional base.
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1 Introduction

The purpose of this paper is to generalize a result of Fujita, on the decomposition
of Hodge bundles over curves, to the case of a higher dimensional base. We first
consider the direct image sheaf of the relative canonical sheaf for a fibration whose
degeneracy locus (set of critical values) is contained in a normal crossing divisor and
with unipotent local monodromies. It is known that such a sheaf is locally free and
numerically semipositive (or nef), see Fujita [5] and Kawamata [10]. Moreover if the
base space of the fibration is a curve, then Fujita proved that the direct image sheaf
is a direct sum of an ample vector bundle and a unitary flat bundle with respect to
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the natural Hermitian metric [6]. We shall generalize the latter result to the case of a
higher dimensional base.

The algebraic statement on the nefness of the Hodge bundle was the starting point
of many positivity results concerning canonical and pluricanonical sheaves. These
results were used in the minimal model program. But the original theorem’s statement
is more analytic saying that the direct image sheaf carries a semi-positive Hermitian
metric with mild but not algebraic singularities.We believe that this analytic statement
should have more consequences (see e.g. Theorem 2.1).

The following is our first main result:

Theorem 1.1 (Unipotent monodromies case) Let f : X → Y be a proper surjective
morphism from a compact connected Kähler manifold to a smooth projective variety.
Assume that there are respective simple normal crossing divisors B on X and D
on Y such that f is smooth over Y \ D and that f −1(D) = B set-theoretically. Set
Xo ..= X \ B, Y o ..= Y \ D, f o ..= f |Xo and n ..= dim X −dim Y . Assume that the local
monodromies of the local system Rn f o∗ CXo around the branches of D are unipotent.
Let V ..= f∗OX (K X − f ∗KY ) be the direct image sheaf of the relative canonical
sheaf. Then

(1) V is a locally free sheaf which is numerically semi-positive.

Moreover,

(2) there is a decomposition V = U ⊕W , an orthogonal direct sum with respect to the
natural Hermitian metric, where U is a unitary flat bundle and W is generically
ample, i.e., W |C is an ample vector bundle for any general curve section C of Y .

The first assertion is proved in [5] for the case dim Y = 1 and in [10] generally. See also
[12]. See [11] for a generalization to pluricanonical forms. The second assertion when
dim Y = 1 is the essential part of Fujita’s theorem [6]. See [1,2] for details of proof of
Fujita’s more general statement.We recall that one or both of the two summandsU , W
can be = 0; in [2,3] examples are given where U corresponds to a representation of
π1(Y ) of infinite order, and W �= 0, in particular V is not semi-ample.

Next we prove the following full fledged analogue of Fujita’s decomposition theo-
rem over a higher dimensional base:

Theorem 1.2 (General case) Let f : X → Y be a proper surjective morphism
from a compact connected Kähler manifold to a smooth projective variety. Let
V ..= f∗OX (K X − f ∗KY ) be the direct image sheaf of the relative canonical sheaf.
Then

(1) V is a torsion free sheaf which is weakly-positive.
(1′) V is a locally free sheaf if there is a normal crossing divisor D such that f is

smooth over Y \ D.

Moreover,

(2) there is a decomposition V = U ⊕W , an orthogonal direct sum with respect to
the natural Hermitian metric, where U is a locally free sheaf which is unitary
flat with respect to the natural Hermitian connection and W is generically ample,
i.e., W |C is an ample vector bundle for any general curve section C of Y .
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(1) and (1′) are proved in [14] using [10]. There are twoways to prove the local freeness
of V :

(i) reducing to the unipotent monodromy case by using the flatness of the covering
of the base as in [14];

(ii) as a consequence of the extension of the Hodge filtration to the canonical exten-
sion, in the same way as in the unipotent monodromy case (cf. [12]).

Recall that ([5,10], resp. [14]) a locally free sheaf V on a projective variety Y is said
to be numerically semi-positive, or nef, if given any curve C and any quotient bundle
Q of V |C , deg(Q) � 0; whereas a torsion free sheaf V on a projective variety Y is
said to be weakly positive if there are a Zariski open subset U and an ample divisor H
on Y such that, for each positive integer n, the natural homomorphism

H0(Y , Smn(V )∨∨⊗OY (m H)
)⊗OY → Smn(V )∨∨⊗OY (m H)

is surjective on U for some positive integer m (here V ∨∨ is the double dual of V ).
It makes sense to separate Theorems 1.1 and 1.2, since from the former follows an

orbifold version of Fujita’s decomposition theorem in the general case.
This orbifold version is proved in the final section, wherewe shall compare, through

an appropriate diagram, the direct image sheaves in the different situationswhich occur
in practice, when one takes first a normal crossing resolution of the degeneracy locus,
and then, as in [10], a finite cover of the base in order to reduce to the case of unipotent
local monodromies.

We define a flat unitary orbifold sheaf on a smooth variety Y in the following way.
Let D be a divisor on Y , with irreducible components D1, . . . , Dk . An orbifold unitary
representation ρ : π1(Y \ D) → U (r), with orders m1, . . . , mk ∈ N�1 is defined to
be one such that, for a small loop γj around Dj , the image ρ(γj ) has order exactly m j .
Let Y ∗∗ be the complement of the locus where D is not normal crossing. We define
a locally free sheaf U∗∗ on Y ∗∗ by taking the upper canonical extension of the flat
unitary bundle U on Y 0 = Y \ D associated to the representation ρ. Then we define a
flat unitary orbifold sheaf Uorb(ρ) associated to the orbifold unitary representation ρ

as the direct image sheaf i∗(U∗∗), where i : Y ∗∗ → Y is the inclusion.

Proposition 1.3 In the general case we have

• an orthogonal splitting V = U orb⊕W , where W is generically ample but where
this time U orb is an orbifold flat unitary sheaf, having vanishing curvature outside
the locus D over which f is not smooth.

• U orb is a locally free sheaf on a big open subset Y oo of Y on which D is a
normal crossing divisor. On Y oo, U orb coincides with the upper canonical extension
(see the next section) corresponding to a unitary representation ρ : π1(Y \ D) →
U (r), with r = rank(U orb), such that, for small loops γj around the divisorial
components Dj of D, the ρ(γj )’s have finite order.

• U is a locally free summand of U orb, corresponding to the irreducible summands
ρh of ρ such that ρh(γj ) = 1 for all γj .
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2 Proof of Theorem 1.1

We use the notation of Theorem 1.1. The first assertion (1), the nefness of V , is proved
in the following way. This is not new (see the papers cited in the bibliography, also
for more references regarding several assertions made here), but we briefly recall the
proof because we need the notation used in the argument.

We assume that the degeneracy locus D of f (the set of critical values of f ) is
contained in a normal crossing divisor, but do not assume that the local monodromies
around D are unipotent, so that the following construction can be used also for the
proof of Theorem 1.2.

The primitive part Ho
Z
of the local system Rn f o∗ CXo underlies a polarized variation

of Hodge structures. Let Ho ..= Ho
Z
⊗COY o . It is a locally free sheaf on Y o with a

flat connection, called the Gauss–Manin connection, whose sheaf of flat sections is
Ho
C
. The direct image sheaf V o = f o∗ OX (K X − f ∗KY ) is identified as the subsheaf

Fn(Ho), where F · denotes the Hodge filtration. The cup product along the fibres of
f o determines a polarization of the Hodge structures, a non-degenerate but not definite
Hermitian metric on Ho which is flat with respect to the Gauss–Manin connection,
but with the property that the restriction of this metric to V o is positive definite.

Ho has an extension H as a locally free sheaf on Y called the canonical extension
constructed in the following way [4]. Let xj be local coordinates on Y such that D is
expressed as

∏r
j=1 xj = 0, and let Tj be the corresponding local monodromy trans-

formations for 1 � j � r . Then H is locally generated by the following holomorphic
sections

exp

(
− 1

2π i

r∑

j=1

log Tj log xj

)
v

where the v are multi-valued flat sections of Ho, and the matrices log Tj are defined
to be logUj + log Sj for the decomposition Tj = Uj Sj into unipotent and semisimple
part. We take the branches of the logarithm function such that the eigenvalues of the
matrices log Sj belong to the interval [0, 2π i). We note that logUj is well defined
because Uj − I is nilpotent, and that the expression is single-valued even if v is
multi-valued.

If the local monodromies are unipotent, then the local holomorphic sections of H
are characterized, among local holomorphic sections of Ho, by the condition that the
norm of their restrictions to Ho grows at most logarithmically along the boundary D.
In general, they grow asymptotically as

∏r
j=1 |xj |−pj | log xj |qj for some pj , qj such

that 0 � pj < 1. We note that the failure of the unipotency of the Tj is reflected in
the eigenvalues of the Sj , whence the exponents pj above. We call these exponents pj

boundary contributions.
The Hodge filtration on Ho extends to H in such a way that the F p(H)’s are locally

free subbundles. Moreover we have V = f∗OX (K X − f ∗KY ) = Fn(H). This fact
holds even if the local monodromies are not unipotent as long as f is smooth outside
a normal crossing divisor. In particular V is locally free (see also [12]).
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The Hodge–Riemann bilinear relations and Griffiths’ transversality [7] imply that
the curvature of the connection of V o corresponding to the restricted metric on V o is
semi-positive. The nefness of V follows from this semi-positivity together with the
observation that the boundary contributions along D vanish because the metric grows
at most logarithmically.

Now we prove the latter assertion (2). We fix an ample line bundle L on Y . Let 0 ⊂
N1 ⊂ · · · ⊂ Nm = V be a Harder–Narasimhan filtration with respect to L; the Ni are
reflexive subsheaves of V such that the subquotients Ni/Ni−1 are semistable torsion
free sheaves with respect to L , and the inequalities μ(Ni/Ni−1) > μ(Ni+1/Ni ) hold
for all i , where the slopeμ of a torsion free sheaf is defined byμ(•) = deg(•)/rank(•)

with deg(•) = c1(•)Ldim Y−1.
By a theorem of Mehta–Ramanathan [13], if we take a general curve section C

(a complete intersection of general hypersurfaces of sufficiently high degrees), then
the restriction 0 ⊂ N1,C ⊂ · · · ⊂ Nm,C = VC for Ni,C = Ni ⊗OC is a Harder–
Narasimhan filtration of VC = V ⊗OC .

Let U ′ = V /Nm−1 be the last quotient. Since V is nef, we have deg(U ′) � 0. If
deg(U ′) > 0, then VC is an ample vector bundle on C by Hartshorne [8]. In this case,
we have V = W .

Hence we may assume in the following that deg(U ′) = 0. In this case, we set
W ..= Nm−1. Then WC = Nm−1,C is an ample vector bundle on C . We shall prove that
the quotient bundle U ′ splits and there is a subbundle U ∼= U ′ which is a unitary flat
bundle using the following general result (a similar argument is given on page 86 of
[2]). Shigeharu Takayama communicated to the authors that the following result was
independently proved by Genki Hosono (cf. [9]):

Theorem 2.1 Let X be a complex manifold which is not necessarily compact, and let

0 → E → F ′ → G → 0

be an exact sequence of holomorphic vector bundles on X. Assume that F ′ has a smooth
positive definite Hermitian metric whose curvature form �F ′ is semi-positive, and
that the curvature form �G of the induced metric on G vanishes. Then the orthogonal
complement E⊥ of E with respect to the metric on F ′ is a holomorphic subbundle of
F ′ which is isomorphic to G. In particular we have F ′ ∼= E ⊕⊥ G as holomorphic
bundles with metric.

Proof We shall prove the dual statement; namely let now

0 → S
i−−→ F

p−−→ Q → 0

be an exact sequence of holomorphic vector bundles, where F has a smooth positive
definite Hermitian metric whose curvature form �F is semi-negative, and that the
curvature form �S of the induced metric on the subbundle S vanishes. Then we shall
prove that the orthogonal complement S⊥ of S in F is a holomorphic subbundle which
is isomorphic to the quotient bundle Q, hence F ∼= S⊕⊥ Q.

Let DF : A0(F) → A1(F) be the connection of F which is compatible with the
complex structure and the metric, and let σ = pDF i : A0(S) → A1(Q) be the second
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fundamental form. Let p0 : S⊥ → Q be the restriction of p. p0 is an isomorphism of
C∞ vector bundleswithHermitianmetrics. Then DS = DF −p−1

0 σ : A0(S) → A1(S)

and DQ = p DF p−1
0 : A0(Q) → A1(Q) are the connections which are compatible

with the complex structures and the induced metrics. We have the formula

(�S u, v) = (�F u, v) − (σ (u), σ (v))

for u, v ∈ A0(S). Since �S = 0 and �F is semi-negative while the metric is positive
definite, we deduce that σ = 0. Thus DF (u) ∈ A1(S) for u ∈ A0(S). It follows
that DF (u) ∈ A1(S⊥) for u ∈ A0(S⊥). If u is a holomorphic section of Q, then
DQ(u) ∈ A1,0(Q). It follows that DF (p−1

0 (u)) = p−1
0 DQ(u) ∈ A1,0(F). Hence

p−1
0 (u) is a holomorphic section of F . Therefore S⊥ is a holomorphic subbundle. ��

We can deduce from Theorem 2.1 the following well-known result:

Example 2.2 Let F be a locally free sheaf of rank 2 on an algebraic curve C which is
a non-trivial extension of OC by a nef invertible sheaf. Then F is nef but F does not
admit a smooth Hermitian metric with semi-positive curvature.

We apply the above theorem to the restriction V o
C , (U ′)o

C and W o
C of V , U ′ and W ,

respectively, to the open part Co = C ∩ Y o. Since the numerical semi-positivity of U ′
is a consequence of the semi-positivity of the curvature and the null boundary contri-
butions, the condition deg(U ′) = 0 implies that the curvature of (U ′)o

C vanishes. By
Theorem 2.1, there is a holomorphic subbundle U o

C of V o
C such that V o

C = W o
C ⊕⊥ U o

C ,
and such that U o

C is flat with respect to the connection associated to the positive defi-
nite Hermitian metric of V o

C . Thus U o
C is unitary flat with respect to the Gauss–Manin

connection.
Since the local monodromies of the Gauss–Manin connection on Ho

Z
are unipotent,

the local monodromies of U o
C are trivial. It follows that U o

C extends to a unitary flat
vector bundleUC onC . Since the curve sections C are general, we can moveC around
so that the unitary flat bundles UC can be extended to a unitary flat bundle U oo on a
big open subset Y oo of Y , an open subset whose complement has codimension at least
2 by virtue of the following argument.

The union of general curves which are complete intersections of hypersurface sec-
tions of high degree is a constructible set Y ∗, which contains an open subset of Y , else
the curves are not general. Moreover the complement of Y ∗ does not contain an open
subset in any irreducible divisor � since C is general. Thus the complement of Y ∗ has
codimension at least 2. By the same token, at the general points of Y ∗ the tangents of
the curves C fill out a big open subset. Hence we get a unitary flat bundle U oo on a
big open set Y oo. Since π1(Y oo) ∼= π1(Y ), U oo extends to a unitary flat bundle on the
whole Y .

On the other hand, the canonical extension H of Ho is characterized as a holomor-
phic vector bundle by the condition that the norms of its holomorphic sections have
at most logarithmic growth. Therefore U is still a holomorphic subbundle of V , and
we have a direct sum decomposition V = W ⊕U .
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Remark 2.3 Keeping the same assumptions of Theorem1.1, further use of Theorem2.1
shows: if there is a generically surjective homomorphism V → Q to a reflexive sheaf
with deg (Q) = 0, then there is a direct sumdecompositionV = W ′⊕ Q′ with Q′ ∼= Q
being a unitary flat bundle with respect to the natural Hermitian metric (see also the
argument in the next section).

3 Proof of Theorem 1.2

In this section we fully extend Fujita’s decomposition theorem to the case of a higher
dimensional base variety Y , proving Theorem 1.2.

In the proof we shall use a similar notation to the one of Theorem 1.1. We denote
by D the degeneracy locus of f , the locus over which f is not smooth (also called the
set of critical values of f ), so that f is smooth over Y o = Y \ D.

We take a log resolution u : Y ′ → Y for D ⊂ Y ; Y ′ is smooth and projective, u
is birational, and D′ = u−1(D) is a simple normal crossing divisor. Since the direct
image sheaf V does not depend on the choice of a birational model of X , we may
assume that there is a morphism f ′ : X → Y ′ such that f = u ◦ f ′.

Let V ′ = f ′∗OX (K X − ( f ′)∗KY ′). It is a locally free sheaf by [14, Theorem 4.1].
Moreover, the weak-positivity of V ′ and V was proved by Viehweg [14, Theorem III].

Since KY ′ � u∗KY , we have u∗V ′ ⊂ V . More precisely, if R is the ramification
divisor of u, KY ′ = u∗(KY ) + R, we have:

V = f∗(O(K X ))(−KY ) = u∗
(

f ′∗(O(K X ))(−KY ′) + R
) ⊃ u∗(V ′).

On the other hand, since these sheaves are equal outside of codimension 2 and V is
torsion free, V embeds into the reflexive hull of u∗V ′: V ⊂ (u∗V ′)∨∨.

Our proof of (2) of Theorem 1.2 is similar to that of Theorem 1.1 in the following
way. We take a Harder–Narasimhan filtration of V , let U ′ be the last quotient, and
assume that deg(U ′) = 0. By Mehta–Ramanathan, we take a generic curve C and
consider the restrictionU ′

C . We recall that deg(U ′
C ) is the sum of the integration of the

curvature on the open part Co = C ∩Y o and the sum of the boundary contributions, as
shown in [10, Lemma 21, p. 268]. Indeed the line bundle L ..= �top(U ′|C ) on C has a
smooth metric outside a finite set of points P , where the growth of the norm of a local
generating section sP is asymptotic to |sP | ∼ |tP |−αP (log|tP |)βP, where the αP are
non-negative rational numbers, in view of the choice of the branch for the canonical
extension. We observe that each term is non-negative, due to the semipositivity of the
curvature. Since deg(U ′

C ) = 0, both contributions vanish, i.e., all the numbers αP = 0,
and the curvature vanishes.

Since αP = 0, the local monodromies are unipotent whence trivial (unipotent and
unitary). Indeed, if the local monodromy is not unipotent, then the growth of the
norm of the generating holomorphic sections, defined by using the multivalued flat
sections, is not logarithmic, so for some of them it is greater than a constant times
|tP |−aP (log |tP |)bP with aP > 0, contradicting that the sum of the aP ’s equals αP = 0.

By Theorem 2.1, there is a holomorphic subbundle U o
C

∼= (U ′
C )Co such that V o

C =
W o

C ⊕⊥ U o
C on Co. Since U o

C is unitary flat with respect to the given Hermitian metric,
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and with trivial local monodromies there is a locally free sheaf with a unitary flat
connection UC on C which is an extension of U o

C . By the same argument as in the
proof of Theorem 1.1, we obtain a locally free sheaf U on Y which is unitary flat.

We have to prove that U is a direct summand of V . By the same argument applied
to f ′ : X → Y ′, we obtain a locally free sheaf UY ′ on Y ′ which is unitary flat with
respect to the given metric. Since u∗U and UY ′ are defined as extensions of the same
unitary flat bundles on Y o, we have u∗U = UY ′ . This time, since V ′ is a subbundle
of the canonical extension defined by using the local monodromies, UY ′ is a direct
summand of V ′; V ′ = UY ′ ⊕⊥ WY ′ . By taking the direct image by u, we have

U ⊕⊥ u∗WY ′ ⊂ V ⊂ U ⊕⊥ (u∗WY ′)∨∨.

Therefore we have V = U ⊕⊥ W . ��
Proof of Proposition 1.3 In the general case, we construct the following bimeromor-
phically Cartesian diagram using [10, Theorem 17]:

X ′′

f ′′
��

v′
�� X

f ′
��

Id �� X

f

��
Y ′′ u′

�� Y ′ u �� Y ,

where X ′′, Y ′, Y ′′ are all smooth, such that

(i) u is birational, and the degeneracy locus of f ′ is contained in a simple normal
crossing divisor D′ on Y ′.

(ii) u′ is a finite surjectivemorphismwithAbelianGalois groupG, and f ′′ : X ′′ → Y ′′
satisfies the hypotheses of Theorem 1.1.

Denote by V ′′, V ′, V the respective images of the relative canonical sheaves. By [14]
or by the definition of the canonical extension, we have a generically invertible homo-
morphism between the two vector bundles of the same rank V ′′ → u′∗(V ′). Thus we
have an injective homomorphism (u′∗V ′′)G → V ′ between locally free sheaves which
is generically surjective.

ByTheorem1.1, there is anorthogonal splittingV ′′ = U ′′⊕W ′′,whereU ′′ is unitary
flat and W ′′ is generically ample. Let U ′orb be smallest subsheaf of V ′ containing
(u′∗U ′′)G and such that V ′/U ′orb is torsion free, i.e., the hull of (u′∗U ′′)G in V ′. By the
definition of the canonical extension, U ′orb coincides with the canonical extension of
(u′∗U ′′)G |Y ′\D′ , hence a locally free sheaf. We finish the proof by taking U orb to be
the hull of u∗(u′∗U ′′)G in V . ��
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