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In this paper, we give a detailed proof of a result due to Torsten Ekedahl, describing
complex tori admitting a rigid group action and showing explicitly their projectivity
and their structure in terms of CM-fields. In the appendix, joint with Claudon, we
show, using a method of Green-Voisin, that all group actions on complex tori deform to
projective ones.
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1. Introduction

The work of Kodaira [8, 9] lead to the question whether any compact Kähler man-
ifold enjoys the property of admitting arbitrarily small deformations which are
projective (Kodaira settled in [9] the case of surfaces).

Motivated by Kodaira’s problem (see the final section and the appendix) the
first author asked Torsten Ekedahl at an Oberwolfach conference around 1999 if
there exists a rigid group action of a finite group G ⊂ Bihol(T ) on a complex torus
T (see Sec. 2 for definitions regarding deformations of group actions) which is not
projective. Ekedahl answered this question and sketched a strategy of proof for the
statement that the rigidity of the action (T,G) implies that T is projective (i.e. T
is an abelian variety).

The authors acknowledge support of the ERC 2013 Advanced Research Grant — 340258 —
TADMICAMT.
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Later Claire Voisin gave a counterexample to the general Kodaira problem show-
ing in [15] the existence of a rigid compact Kähler manifold which is not projective
(and later in [16] she even gave counterexamples which are not bimeromorphic to
a projective manifold). Kodaira’s property still remains a very interesting theme of
research: understanding which compact Kähler manifolds or Kähler spaces with klt
singularities satisfy Kodaira’s property (see [5] for quite recent progress).

On the other hand Ekedahl’s approach allows a rather explicit description of
rigid actions on complex tori in terms of orders in CM-fields, hence providing explic-
itly given polarizations on them. Therefore his result turned out to be quite interest-
ing and useful for other purposes (see [4] for applications to the classification theory
of quotient manifolds of complex tori), and for this reason we find it important to
publish here a complete proof.

Theorem 1 (Ekedahl). Let (T,G) be a rigid group action of a finite group
G ⊂ Bihol(T ) on a complex torus T . Then T (or, equivalently, T/G) is projec-
tive. Moreover, if we write T = V 1,0/Λ, then

Λ ⊗Z Q = ⊕jW
nj

j ,

where Wj is a Hodge structure on a CM field Fj and where ⊕jFj is a subalgebra of
the centre of the group algebra Q[G].

The contents of the paper are as follows.
In Sec. 2, we briefly discuss deformations of group actions on complex manifolds.
Then, in the subsequent section, we develop the tools used in the proof of

Theorem 1, mainly based on Hodge theory and representation theory.
The main ideas of the proof are the following: if A is a finite-dimensional

semisimple Q-algebra, the rigidity of the action of A (cf. Definition 5) on a rational
Hodge structure V of weight 1 can be determined by looking at the simple sum-
mands of A ⊗Q C appearing in V 1,0, respectively in V 0,1. A second ingredient is
that, for A = Q[G] with G finite (and also in a more general situation), we show
that rigidity is equivalent to having a rigid action of the commutative subalgebra
given by the centre Z(Q[G]).

Then we apply Proposition 16, stating that, if A = Z(Q[G]) is the centre of the
group algebra and the action of A on V is rigid, then the Hodge structure V is
polarizable.

Finally, in the appendix, we show that every group action (T,G) on a complex
torus admits arbitrarily small deformations which are projective.

2. Deformations of Group Actions

Let X be a compact complex manifold. Let G ⊂ Bihol(X) be a finite group, and
denote by α :G×X → X the corresponding group action of G on X .

Definition 2. (1) A deformation (p, α′) of the group action α of G on X consists
of a deformation p : (X,X0) → (B, t0) of X (i.e. X0 := p−1(t0) and X ∼= X0) given
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together with α′ :G×X → X, a holomorphic group action commuting with p (here
we let G act trivially on the base), such that the action on X0

∼= X induces the
initially given action α.

(2) A deformation (p, α′) is said to be trivial if its germ is isomorphic to the trivial
deformation X ×B → B, endowed with the action α× idB.

(3) The action α is said to be rigid if every deformation of α is trivial.

Kuranishi theory leads to an easy characterization of rigidity of an action α of
a group G on X , see [1, p. 23; 2, Chap. 4; 10].

Denote by p :X → Def(X) the Kuranishi family of X ; then this characterization
is related to the question: which condition on t ∈ Def(X) guarantees that G is a
subgroup of Aut(Xt)? It turns out (cf. [1, p. 23]) that G ⊂ Bihol(Xt) if and only if
g∗t = t for any g ∈ G, so that t ∈ Def(X) ∩H1(X, θX)G.

We then have (see [2, Proposition 4.5]):

Proposition 3. Set Def(X)G := Def(X) ∩H1(X, θX)G. The group action α of G
on X is rigid if and only if Def(X)G = 0 (as a set). A fortiori the action is rigid if
H1(X, θX)G = 0 (in this latter case we say that the action is infinitesimally rigid).

In the upcoming chapter, we shall consider the case where X = T is a complex
torus: the rigidity of (T,G), amounting to the fact that the representation of G on
H1(X,ΘX) contains no trivial summand, can then be read off explicitly from the
action of G on the tangent bundle.

3. Rigid Actions on Rational Hodge Structures

Denote by H1 the category of rational Hodge structures of type ((1, 0), (0, 1)) (a
good reference for the following notions is the classic book [11]). An object of H1

is a finite-dimensional Q-vector space V endowed with a decomposition

V ⊗Q C = U ⊕ U =: V 1,0 ⊕ V 0,1.

The elements of H1 can be viewed as isogeny classes of complex tori

T :=
Λ ⊗Z C

Λ ⊕ V 0,1
,

where Λ ⊂ V is an order, i.e. a free subgroup of maximal rank (by abuse of notation
we shall also say that Λ is a lattice in V , observe that V = Λ ⊗Z Q).

We have isogeny classes of Abelian varieties when a rational Hodge structure is
polarizable, according to the following.

Definition 4. Let V ∈ H1 and write for short VC := V ⊗Q C.
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A polarization on V is an alternating form E :V × V → Q satisfying the two
Hodge–Riemann bilinear relations:

(i) The complexification EC :VC ×VC → C satisfies EC(V 1,0, V 1,0) = 0 (hence also
EC(V 0,1, V 0,1) = 0)

(ii) For any nonzero vector v ∈ V 1,0, we have −i ·EC(v, v) > 0 Equivalently, setting
ER :VR × VR → R, we have:

(I) ER(Jx, Jy) = ER(x, y)
(II) the symmetric bilinear form ER(x, Jy) is positive definite.

Here, if x = u+ ū, Jx := iu− iū (J2 = −Id).

Let A be a semisimple and finite-dimensional Q-algebra (for example the group
algebra A = Q[G] for a finite group G). We denote an action r :A → EndH1(V ) for
V ∈ H1 by a triple (V,A, r).

If Λ ⊂ V is a lattice and T = (V ⊗Q C)/(Λ⊕V 0,1) is the corresponding complex
torus then A maps to End(T ) ⊗Z Q.

Definition 5. An action (V,A, r) is called rigid, if

HomA(V 0,1, V 1,0) = 0. (1)

Rigidity 1 means, in view of what we saw in the previous section, and in view of

H1(ΘT ) = H1(OT ) ⊗C H
0(Ω1

T )∨ = U
∨ ⊗C U = HomA(V 0,1, V 1,0),

that there are no deformations of T preserving the A-action.
We consider now some examples of the above notion.

Example 6. Let A be a totally imaginary number field F . This means that
[F :Q] = 2k and F possesses 2k different embeddings σj :F → C, none of which is
real (this means: σj(F ) ⊂ R).

Hence each σj is different from the complex conjugate, σj 	= σj , and if we set
V := F , with the obvious action of F , all the Hodge structures on V are rigid and
correspond to the finite set of partitions of the set E of embeddings of F into two
conjugate sets {σ1, . . . , σk} and {σ1, . . . , σk}.

Since the F -module F ⊗Q C is the direct sum

F ⊗Q C = ⊕σj∈E Cσj ,

where Cσj is the vector space C with left action of F given by:

x · z := σj(x) · z, ∀x ∈ F, z ∈ C,

and choosing such a partition amounts to choosing V 1,0 := ⊕j=1,...,kCσj .

A particular case is given by the class of CM-fields.

Example 7. Recall that a CM-field is a totally imaginary quadratic extension F

of a totally real number field K.
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Equivalently, (cf. [13, Proposition 5.11]) F is a CM-field if it carries a non-trivial
involution ρ such that σ ◦ ρ = σ for all embeddings σ :F ↪→ C . In particular F is
totally imaginary.

In this case any Hodge structure on V := F is polarizable.
Let indeed σ1, . . . , σk :F ↪→ C be the embeddings of F occurring in V 1,0. Fol-

lowing [13, p. 128] choose ζ ∈ F satisfying the following conditions:

(a) ζ is imaginary, i.e., ρ(ζ) = −ζ,
(b) σj(ζ) is imaginary with positive imaginary part for each j = 1, . . . , k.

A polarization on V of F is then given, if we set xj := σj(x), yj := σj(y), by the
skew symmetric form (we set here σk+j := σj)

E(x, y) := trF/Q(ζxρ(y)) =
2k∑

j=1

σj(ζ)xjyj =
k∑

j=1

σj(ζ)(xjyj − xjyj).

In fact, the first Riemann bilinear relation amounts to E(Jx, Jy) = E(x, y), which
is clearly satisfied, since (Jx)j = ixj , for j = 1, . . . , k, and the real part of the
associated Hermitian form is the symmetric form

E(x, Jy) =
k∑

j=1

(−i)σj(ζ)(xjyj + xjyj),

which is positive definite since

E(x, Jx) =
k∑

j=1

2 Im(σj(ζ))|xj |2 > 0

for x 	= 0.

Let us now proceed towards the proof of the main theorem.
An important step towards the main theorem is that in the case where

A = Q[G] (2)

rigidity can be reduced to rigidity of the action restricted to the centre of the group
algebra.

Proposition 8. Let A = Q[G] be the group algebra of a finite group G over the
rationals.

Then the triple (V,A, r) is rigid if and only if (V, Z(A), r′) is rigid, where Z(A)
is the centre of A and r′ is the restriction of r to Z(A).

Proof. For each field K, Q ⊂ K ⊂ C, A ⊗Q K = K[G] has as centre ZK :=
Z(K[G]), the vector space with basis vC , indexed by the conjugacy classes C of G,
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and where

vC :=
∑

g∈C
g.

For K = C, another more useful basis is indexed by the irreducible complex
representations Wχ of G, and their characters χ (these form an orthonormal basis
for the space of class functions, i.e. the space ZC if we identify the element g to its
characteristic function).

For each irreducible χ, the element

eχ :=
χ(1)
|G|

∑

g∈G

χ(g−1) · g ∈ C[G]

is an idempotent in Z(C[G]). Indeed, we even have that

Z(C[G]) = ⊕χC · eχ,

and the idempotents eχ satisfy the orthogonality relations eχ′ · eχ = 0 for χ 	= χ′.
This leads directly to the decomposition

A⊗Q C = C[G] = ⊕χ∈Irr(G)Aχ, Aχ := eχC[G] ∼= End(Wχ),

where χ runs over all irreducible characters of G, and to the semisimplicity of the
group algebra. Notice that eχ acts as the identity on Wχ, and as 0 on Wχ′ for
χ′ 	= χ.

In fact, we shall prove the stronger statement that for any two finitely generated
C[G]-modules M and N (note that A⊗Q C = C[G])

HomC[G](M,N) = 0 ⇔ HomZ(C[G])(M,N) = 0.

The right-hand side HomZ(A⊗QC)(M,N) clearly contains the left-hand side.
By semisimplicity, each representation M splits as a direct sum of irreducible

representations,

M =
∑

χ∈Irr(G)

Mχ,Mχ = Wχ ⊗C[G] (Cr),

where Cr is a trivial representation of G.
By bilinearity we may assume that M = Wχ and N = Wχ′ are simple modules

associated to irreducible characters χ, χ′ of G.
Then, by the lemma of Schur, the left-hand side HomA⊗QC(M,N) is = 0 for

χ′ 	= χ, and isomorphic to C for χ′ = χ.
For the right-hand side, it suffices to prove that HomZ(A⊗QC)(M,N) = 0 for

χ′ 	= χ, when M = Wχ, N = Wχ′ .
However, eχ acts as the identity on M and as zero on N , hence ψ ∈

HomZ(A⊗QC)(M,N) implies

ψ(v) = ψ(eχv) = eχ(ψ(v)) = 0,

as we wanted to show.
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This shows the statement.

We have more generally:

Proposition 9. Let A be a semisimple Q-algebra of finite dimension, and let
(V,A, r) be an action on a rational Hodge structure V, Then r is rigid if and only
if (V, Z(A), r′) is rigid; here Z(A) is the centre of A and r′ is the restriction of r.

Proof. More generally, if M,N are A⊗ C-modules, then we claim that

HomA⊗C(M,N) = 0 ⇔ HomZ(A⊗C)(M,N) = 0.

By bilinearity of both sides, and by semisimplicity (each module splits as a
direct sum of irreducibles) we can assume that M,N are simple modules and that
A is a simple algebra.

By Schur’s lemma the left-hand side is nonzero exactly when M and N are
isomorphic. The left-hand side is contained in the right-hand side, so it suffices to
show that the right-hand side is nonzero exactly when M and N are isomorphic.
But ([7, Lemma 1, p. 205]) any two irreducible modules over a simple Artininian
ring are isomorphic.

Remark 10. We have C[G] = ⊕χC[G] · eχ.
Working instead over a field K of characteristic 0, an algebraic extension of

Q (so Q ⊂ K ⊂ C), the decomposition of K[G] into simple summands is (see
[17, Proposition 1.1]) again provided by central idempotents in K[G],

K[G] = ⊕[χ]K[G]eK(χ), eK(χ) :=
∑

χσ∈[χ]

eχσ ,

where the first sum runs over the set of Γ-orbits [χ] in the set all irreducible charac-
ters χ of G; here Γ is the Galois group Gal(K(χ)/K) of the field extension K(χ) of
K, generated by the values of all the characters χ, i.e. by {χ(g) | g ∈ G,χ ∈ Irr(G)}.

And the centre of K[G] is a direct sum of fields

Z(K[G]) = ⊕[χ]F[χ],

where the field F[χ] is the centre (for the last isomorphism, see [17], Proposition
1.4)

F[χ] := Z(K[G])eK(χ) ∼= K({χ(g) | g ∈ G})

of the algebra K[G]eK(χ), and enjoys the property that F[χ] ⊗K C = ⊕χ∈[χ]Ceχσ .

The next lemma explains the relation occurring between finite groups and CM-
fields.
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Lemma 11. The centre of the group algebra Z(Q[G]) splits as a direct sum of
number fields, Z(Q[G]) = F1 ⊕ · · · ⊕ Fl which are either totally real, or CM-fields.

Proof. Write m := |G|, let ζm be a primitive mth root of unity and let d be the
number of conjugacy classes in G, which equals the number of irreducible represen-
tations of G. Then

Fj ⊂ Z(Q[G]) ⊂ Z(Q(ζm)[G]) ∼=Q−alg. Q(ζm)d,

where we used in the last isomorphism that every complex representation of G is
defined over Q(ζm). Hence Fj embeds into the cyclotomic field Q(ζm). The extension
Q(ζm)/Q is Galois with group Gal(Q(ζm)/Q) ∼= (Z/mZ)∗ (the isomorphism maps
ϕa ∈ Gal(Q(ζm)/Q), such that ϕa(ζm) = ζa

m, to a ∈ (Z/mZ)∗), so by the Main
Theorem of Galois Theory, there is a subgroup H of Gal(Q(ζm)/Q), such that
Fj

∼= Q(ζm)H (the subfield of Q(ζm) fixed by the action of H). If −1 ∈ H (which
corresponds to ϕ−1, the complex conjugation), the field Fj is totally real, otherwise
Fj is a CM-field.

4. Proof of Theorem 1

Fix now an action (V,A, r) and assume that

A is commutative. (3)

Since A is commutative, A is a direct sum of number fields,

A = F1 ⊕ · · · ⊕ Fl.

Assume that we have a homomorphism of algebras σ :A → C. For each idem-
potent e of A, σ(e) is an idempotent of C, hence σ(e) = 1 or σ(e) = 0. In A, the
identity element 1 is a sum of idempotents

1 = 1F1 + · · · + 1Fl
,

and if σ 	= 0, then σ(1) = 1. This implies that for such a homomorphism σ there is
exactly one j ∈ {1, . . . , l}, such that σ(1Fj ) = 1, and, for i 	= j, we have σ(1Fi) = 0.

Let then C = {σ1, . . . , σk} be the set of all the distinct Q-algebra homomor-
phisms A → C: then these homomorphisms σj : A → C are obtained as the
composition of one of the projections A → Fh with an embedding Fh ↪→ C (hence
k =

∑
h[Fh : Q] = dimQ A).

Define now (as in Example 6) the A-module Cσj as the vector space C endowed
with the action of A such that

x · z := σj(x) · z.

Hence we have a splitting of A-modules

A⊗Q C = ⊕l
j=1(Fj ⊗Q C) = ⊕k

j=1Cσj .
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We now show that we have a splitting in the category of rational Hodge
structures

V = V1 ⊕ · · · ⊕ Vl,

where Vi is an Fi-module, and an A-module via the surjection A → Fi.
We simply define Vj := 1Fj · V . We have a splitting of modules

V = V1 ⊕ · · · ⊕ Vl,

since for i 	= j, 1Fi1Fj = 0, and

v = 1 · v = (1F1 + · · · + 1Fl
)v =: v1 + · · · + vl.

It is a splitting in the category of rational Hodge structures because each element
of A preserves the Hodge decomposition, hence Vj is a sub-Hodge structure of V .

Therefore, the action r is a direct sum of actions

rj : Fj → EndH1(Vj).

Each rj induces, by tensor product, a homomorphism of rings

Fj ⊗Q C → End(Vj ⊗Q C) = End(V 1,0
j ⊕ V 0,1

j ),

and a splitting of A-modules

V ⊗ C = V 1,0 ⊕ V 0,1 = ⊕k
j=1(V

1,0
σj

⊕ V 0,1
σj

),

where Vσj is the character subspace on which A acts via x · v := σj(x)·v. This holds
for the following reason: each Vj is an Fj module; and since Fj is a number field,
then Fj = Q[x]/P (x), where P is irreducible, and rj(x) is an endomorphism aj of
Vj with minimal polynomial P (a polynomial with distinct roots). In particular, aj

is diagonalizable over Vj ⊗Q C, and each diagonal entry yields some embedding σh

of Fj into C.

Remark 12. The rigidity of (V,A, r) is equivalent to the fact that for each σj ∈ C
either V 1,0

σj
or V 0,1

σj
is zero, in particular, since V 1,0

σj = V 0,1
σj

, no real σj appears either
in V 1,0 or in V 0,1.

Following a terminology similar to the one introduced in [3], we define the notion
of Hodge-type.

Definition 13. Define the Hodge-type of an action of A by the function τV : C → N,
such that

τV (σ) := dimCV
1,0
σ .

Hodge symmetry translates into

(HS) τV (σ) + τV (σ̄) = dimC Vσ,

which implies in particular that if we have a real embedding, i.e. σ = σ, then
τV (σ) = 1

2 dimC Vσ .
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Moreover, if Hodge symmetry holds, the action is rigid if and only if

(R) τV (σ) · τV (σ̄) = 0, ∀σ.

Proposition 14. If (V,A, r) is rigid, then it is determined by the A-module V and
by the Hodge-type.

Conversely, if V is an A-module, and there is a Hodge structure such that

(HS) τV (j) + τV (j̄) = dimC Vσj ,

whenever σj̄ = σj , and moreover

(R) τV (j) · τV (j̄) = 0 ∀ j,

then this Hodge structure determines a rigid action (V,A, r).

Proof. In one direction, the Hodge-type determines V 0,1, V 1,0, since, A being
commutative, V splits into character spaces Vσj , and the function τV determines
whether Vσj ⊂ V 0,1, or Vσj ⊂ V 1,0.

In the other direction, the given Hodge structure is preserved by the action of
A hence we have an action in the category of rational Hodge structures.

Lemma 15. Assume that we have a rigid action (V,A, r) of split type, where

A = F1 ⊕ · · · ⊕ Fl

is commutative and each Fi is a field.

(i) If l = 1 (so A =: F is a field), V ∼= Wn in H1, where W is a Hodge structure
on F .

(ii) The rational Hodge structure V splits as a direct sum

V = Wni
1 ⊕ · · · ⊕Wnl

l ,

where Wj is a Hodge structure on Fj and nj ≥ 0.

Proof. Assertion (i): Here V is an F -vector space, and so f :V ∼→ Fn as vector
spaces. As we observed the rigidity of (V, F, r) implies that all embeddings of F
into C appear in either V 1,0 or V 0,1, hence F has no real ones. Let σ1, . . . , σd be
the embeddings of F appearing in V 1,0, so that σ1, . . . , σd are the ones appearing in
V 0,1. Define a Hodge structure W on F according to the type of V , i.e. as follows:

W ⊗Q C = W 1,0 ⊕W 0,1, where W 1,0 = ⊕d
j=1Cσj , W 0,1 = ⊕d

j=1Cσj
.

Then fC :V ⊗Q C → (W ⊗Q C)n is an isomorphism of C-vector spaces together with
an F -action.

Assertion (ii) follows immediately from assertion (i), since we have the splittings
A = F1 ⊕ · · ·⊕Fl and V = V1 ⊕ · · · ⊕ Vl, and the A-rigidity of V implies the Fj -
rigidity of Vj for all j = 1, . . . , l, hence we can apply step (i) to each Vj .
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The crucial proposition from which the proof of Theorem 1 follows is now.

Proposition 16. If (V,Q[G], r) is rigid, then it is polarizable.

Proof. First of all, if (V,Q[G], r) is rigid, then (V, Z(Q[G]), r) is rigid by Proposi-
tion 8. The assumption that (V, Z(Q[G]), r) is rigid implies now that if some field
Fj does not act as 0 on V , then Fj is necessarily a CM-field by Lemma 11 and the
previous remarks. By Lemma 15, the rational Hodge structure V splits as a direct
sum Wni

1 ⊕ · · · ⊕Wnl

l , where Wj is a Hodge structure on Fj and nj ≥ 0.
To give a polarization on V , it therefore suffices to show the existence of a

polarization for a Hodge structure Wj on a CM-field Fj . But this was shown in
Example 7.

Ekedahl’s Theorem is therefore proven.

5. Final Remarks

Assume that X := T is a complex torus of dimension ≥ 3, and that Y = T/G has
only isolated singularities.

Schlessinger showed in [12, Theorem 3] that every deformation of the analytic
germ of Y at each singular point of Y is trivial.

Hence for every deformation Y → B of Y (we write informally Y as {Yt}t∈B)
Yt has the same singularities as Y , and in particular it follows easily that
Yt\Sing(Yt) and Y \ Sing(Y ) are diffeomorphic and a fortiori one has an isomor-
phism π1(Yt\Sing(Yt)) ∼= π1(Y \Sing(Y )) ∼= π1(Y\Sing(Y)). Therefore the surjec-
tion π1(Y \Sing(Y )) → G induces a surjection π1(Y\Sing(Y)) → G.

Whence, by Grauert’s and Remmert’s extension of Riemann’s Existence Theo-
rem, cf. [6, Satz 32], Yt and Y have respective Galois covers Xt and X with group
G. Hence, the action of G extends to the family X , and each deformation of Y
yields a deformation of the pair (T,G).

The conclusion is that Y is rigid if and only if the action of G on T is rigid.
On the other hand, Ekedahl’s theorem implies then that if Y is rigid, then Y is
projective.

Therefore in this case one cannot get a counterexample to the Kodaira property
via rigidity. We show more generally in the appendix that any such a quotient
Y = T/G with only isolated singularities satisfies the Kodaira property, since any
action can be approximated by a projective one.

An interesting question is: in the case where Y is rigid, is it true that a minimal
resolution of Y is also rigid?
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Appendix A

(By Fabrizio Catanese, Andreas Demleitner and Benôıt Claudon
[benoit.claudon@univ-rennes1.fr])

Ekedahl’s theorem has the advantage of elucidating the structure of (rigid and
non-rigid) actions of a finite group G on a complex torus.

The method of period mappings, used by Green and Voisin (see proposition
17.20 and Lemma 17.21 of [14]) for showing the density of algebraic tori (non
constructive, since it uses the implicit functions theorem), was used by Graf in [5]
to obtain a general criterion, from which follows the following theorem.

Theorem A.1. Let (T,G) be a group action on a complex torus. Then there are
arbitrarily small deformations (Tt, G) of the action where Tt is projective.

Proof. Given a complex torus

T := (Λ ⊗Z C)/(Λ ⊕ V 1,0),

set, as in Sec. 2,

V ⊗Q C = U ⊕ U =: V 1,0 ⊕ V 0,1.

The Teichmüller space of T is an open set T in the Grassmann variety Gr(n, V ⊗Q

C),

T = {Ut |Ut ⊕ Ut = V ⊗Q C},
parametrizing Hodge structures. By abuse of notation we shall use the notation
t ∈ T for the points of Teichmüller space.

The deformations of the pair (T,G) are parametrized by the submanifold T G

of the fixed points for the action of G, which correspond to the set of the subspaces
Ut which are G-invariant.

The tangent space to T G at the point (T,G) is, as seen in Sec. 2, the subspace

H1(ΘT )G ⊂ H1(ΘT ) = H1(OT ) ⊗C H
0(Ω1

T )∨ = U
∨ ⊗C U.

Over T G we have the Hodge bundle

F 1 ⊂ T G × ∧2(V ⊗Q C)∨ s.t. F 1
t = H1,1(Tt) ⊕H2,0(Tt).

Since the family of complex tori is differentiably trivial there is a canonical
isomorphism

∧2(V ⊗Q C)∨ = H2(T,C) ∼= H2(Tt,C).

This allows to define a holomorphic mapping ψ :F 1 → H2(T,C) induced by the
second projection.

We can indeed consider the subbundle (defined over T G)

(F 1)G ⊂ T G ×H2(T,C)G s.t. (F 1)G
t = H1,1(Tt)G ⊕H2,0(Tt)G,

and the corresponding holomorphic mapping φ : (F 1)G → H2(T,C)G induced by
the second projection.

1950092-12
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Step 1: Let η be a Kähler metric on T . By averaging, we replace η by
∑

g g
∗(η)

and we can assume that η is G-invariant.
Let ω ∈ H1,1(T ) ∩H2(Tt,R)G be the corresponding Kähler class.

Step 2: Setting T =: T0, the map φ is a submersion at the point (0, ω).

Before proving step 2, let us see how the theorem follows.
Let D be a sufficiently small neighbourhood of ω inside

H2(T,C)G = H2(T,Q)G ⊗Q C.

For each class ξ ∈ H2(T,Q)G ∩ D, there is therefore a (t, ξ) in a small neigh-
bourhood D′ of (0, ω) such that

ξ ∈ (F 1)G
t = H1,1(Tt)G ⊕H2,0(Tt)G.

Since ξ is real, ξ ∈ H1,1(Tt)G ∩H2(T,Q)G. Taking D sufficiently small, the class ξ
is also positive definite, hence ξ is the class of a polarization on Tt.

Shrinking D and D′, we obtain that t ∈ T G tends to 0 (the point corresponding
to the torus T ). Hence the assertion of the theorem is proven.

Proof of Step 2. The tangent space to (F 1)G at the point (0, ω) is the direct sum

H1(ΘT )G ⊕ (F 1)G
0 = H1(ΘT )G ⊕H1,1(T )G ⊕H2,0(T )G,

and the derivative of φ is the direct sum of ∪ω, ι, where ι is the inclusion (F 1)G
0 ⊂

H2(T,C)G, while the cup product with ω ∈ yields a linear map

β : H1(ΘT )G → H2(T,OT )G = H0,2(T )G ⊂ H2(T,C)G.

Whence φ is a submersion at (0, ω) if and only if β is surjective.
Now, β is surjective if the cup product with ω yields a surjection

β′ : H1(ΘT ) → H2(T,OT )

(taking the subspace of G-invariants is an exact functor).
Observe that H2(T,OT ) = ∧2(U

∨
), while

H1,1(T ) = H1(Ω1
T ) = U

∨ ⊗C U
∨.

Cup product with ω is the composition of two linear maps

H1(ΘT ) → H2(ΘT ⊗OT Ω1
T ) → H2(T,OT ),

where the second map is induced by contraction.
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It can be also seen as the composition of three linear maps:

H1(ΘT ) = U
∨ ⊗C U → (U

∨ ⊗C U) ⊗C (U
∨ ⊗C U

∨)

→ U
∨ ⊗C U

∨ → ∧2(U
∨
) = H2(T,OT ).

Since the last linear map is a surjection, it suffices to show that the composition
of the first two maps yields a surjection

b : U
∨ ⊗C U → U

∨ ⊗C U
∨
.

Since ω is a Kähler class, there exists a basis ui of U such that

ω =
∑

i

u∨i ⊗C u
∨
i .

Hence
∑

h,k

ah,ku∨h ⊗C uk →
∑

h,k

ah,ku∨h ⊗C u∨k

and b is an isomorphism.
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