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We show, for several fake projective planes with a nontrivial group of automorphisms,

that the bicanonical map is an embedding.

1 Introduction

Not always algebraic varieties are described via polynomial equations: sometimes

they are constructed via uniformization: this means, as quotients of certain domains

of a complex vector space, called bounded symmetric domains, via the action of

discontinuous groups. Then general theorems (as [31]) imply the algebraicity of these

quotient complex manifolds.

The problem concerning the algebro-geometrical properties of such varieties

constructed via uniformization and especially the description of their projective embed-

dings (and the corresponding polynomial equations) lies at the crossroads of several

allied fields: the theory of arithmetic groups and division algebras, complex algebraic

and differential geometry, linear systems, use of group symmetries, and topological and

homological tools in the study of quotient spaces.

Of particular importance are the so-called ball quotients, especially in dimen-

sion 2, since they yield the surfaces with the maximal possible canonical volume K2 for

a fixed value of the geometric genus pg. For instance, the problem we deal with here
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is first of all concerned with the extremal case in the important theory of bicanonical

maps of surfaces of general type (as established by Reider in [36]).

Second, Fake Projective Planes (here abbreviated as FPPs), originally discovered

by Mumford in [34], are currently a subject of active research since their derived

categories are quite different from the ones of standard projective spaces and lead

to intriguing mysteries (see [5, 6, 13, 20, 27, 28]). For this purpose it is interesting to

describe their geometry and their embeddings; in particular establishing, as we do here,

that their bicanonical map is an embedding is an important tool towards writing their

equations (as done for a pair of such FPPs by Borisov and the 2nd author in [7]).

Third, we show here how to effectively use topological arguments and symmetry

for the study of linear systems on quotient varieties. Even if many arguments, taken by

themselves, are easy to understand for the respective specialist on the topics used in

their proof, we believe that it may be useful, for those who want to address similar

problems, to see in play several different techniques used here to obtain several

auxiliary results. Hence, we hope that our article may turn out to be useful for a

wider readership.

After this general foreword, let us now pass to a more precise mathematical

description of our results and their background.

A smooth compact complex surface with the same Betti numbers as the complex

projective plane P
2
C

is either P
2
C

or is called a fake projective plane. Indeed, such a

surface has c2 = 3, c2
1 = K2 = 9, Picard number, and 2nd Betti number = 1; thus,

its canonical class is either ample or anti-ample, and in the latter case it is isomorphic

to P
2
C

. In other words a FPP is a surface of general type with pg = 0 and c2
1 = 3c2 = 9.

Furthermore, its universal cover is the unit ball in C
2 by [3] and [37], and its fundamental

group is a co-compact arithmetic subgroup of PU(2, 1) by [30].

Prasad and Yeung [35] enumerated commensurability classes of lattices that

might contain the fundamental groups of FPPs. Their proof also shows that the

automorphism group of an FPP has order 1, 3, 9, 7, or 21. Then Cartwright and Steger

([9, 10]) carried out a computer-based group theoretic enumeration to obtain a more

precise result: there are exactly 50 distinct fundamental groups, each corresponding to

a pair of FPPs, complex conjugate but not isomorphic to each other (by the result of [29]).

They also computed the automorphism groups of all FPPs X. Four groups occur:

Aut(X) ∼= {1}, C3, C2
3 or G21

∼= C7 : C3,

where Cn is the cyclic group of order n and G21 is the unique non-abelian group of

order 21 (semidirect product of C7 with C3, G21 is the group of affine transformations of
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Z/7 of the form x �→ 2ix + a, a ∈ Z/7). Among the 50 pairs, 33 admit a nontrivial group

of automorphisms: three pairs have Aut ∼= G21, three pairs have Aut ∼= C2
3, and 27 pairs

have Aut ∼= C3.

For each pair of FPPs the 1st homology group (abelianization of the fundamental

group)

H1(X,Z) = Tor
(
H2(X,Z)

)
= Tor(Pic(X))

was also computed in [10].

By Reider’s theorem [36] (see the next section) the bicanonical system of a ball

quotient X is base point free; thus, it defines a morphism. If the ball quotient X has

χ(X) ≥ 2, then K2
X = 9χ(X) ≥ 10, and since a ball quotient cannot contain a curve

of geometric genus 0 or 1, the bicanonical map embeds X unless X contains a smooth

genus 2 curve C with C2 = 0, and CKX = 2.

In the case χ(X) = 1, for instance if we have an FPP, we are below the Reider

condition K2
X ≥ 10, and the question of the very ampleness of the bicanonical system

is interesting.

An FPP X with automorphism group of order 21 cannot contain an effective curve

with self-intersection 1, as was first proved in [27] (published in [28], see also [20]). Thus,

by applying I. Reider’s theorem, one sees that the bicanonical map of such an FPP is an

embedding into P
9 (see for instance [13]).

In addition to these three pairs of FPPs, for seven more pairs we confirm here

the very ampleness of the bicanonical system.

Theorem 1.1. For the seven pairs of FPPs given in Table 1 the bicanonical map is an

embedding into P
9.

Table 1 Seven pairs of FPPs

X Aut(X) H1(X, Z) π1(X/C3)

(a = 15, p = 2, {3, 5}, D3) C3 C3 × C7 C3

(a = 15, p = 2, {3, 5}, 33) C3 C2
2 × C3 C3

(a = 15, p = 2, {3, 5}, (D3)3) C3 C3 C3

(C2, p = 2, {3}, d3D3) C2
3 C7 C7, {1}, {1}, {1}

(C10, p = 2, {17−}, D3) C3 C7 {1}
(C18, p = 3, ∅, d3D3) C2

3 C2
2 × C13 C13, Q8, {1}, {1}

(C2, p = 2, ∅, d3D3) C2
3 C2 × C7 C14, S3, C2, C2
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Remark 1.2. (1) When Aut(X) ∼= C2
3, there are four quotients corresponding to the four

order 3 subgroups of Aut(X). Here Q8 is the quaternion group and S3 is the non-abelian

group of order 6.

(2) By [10], the fundamental groups of these surfaces lift to SU(2, 1); thus, the

tautological line bundle of P
2 restricted to the ball descends to give a cube root of the

canonical bundle of X (see [32]). Note that the 1st three pairs in Table 1 have 3-torsion

thus have several cube roots of KX .

The 1st six pairs in Table 1 are dealt with via the following vanishing result.

Theorem 1.3. Let X be an FPP with a nontrivial C3-action. Suppose that the quotient

surface X/C3 has H1(X/C3,Z) = 0 or C3. Then

H0(X, L) = 0

for any ample line bundle L with L2 = 1, or equivalently, X contains no effective curve

D with D2 = 1.

For the last pair in Table 1 we do not have a vanishing theorem. The surfaces

possess either three curves D with D2 = 1 or none. But even in the former case we prove

the very ampleness of the bicanonical system (see Theorem 4.4).

In Section 5 we discuss three more pairs with a nontrivial C3-action, for which

we prove that the bicanonical map is an embedding outside three points, the fixed locus

of the C3-action.

2 Preliminaries

For the reader’ s convenience, we recall the basic notation concerning linear systems

and Reider’s theorem [36] (by stating the expanded version given in Theorem 11.4 of [4]).

A linear system |D| on a variety X is very ample if it yields an embedding of X:

this means that it yields an injective map, which is a local embedding at each point. It

is a well-known and very useful fact that this property amounts to the surjectivity of

H0(OX(D)) → H0(Oζ (D)) for each length 2 subscheme ζ of X; such a subscheme consists

either of two distinct reduced points P and Q or of a tangent vector at a point P. In the

latter case we shall say, using the classical terminology, that ζ consists of two points P

and Q, where Q is infinitely near to P. This terminology allows a shorter wording and

notation (see for instance [12]).
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Theorem 2.1. [36] Let L be nef divisor on a smooth projective surface X.

(1) Assume that L2 ≥ 5. If P is a base point of the linear system |KX + L|, then P

lies on an effective divisor D such that

(a) DL = 0, D2 = −1 or

(b) DL = 1, D2 = 0.

(2) Assume that L2 ≥ 9. If two different points P and Q, possibly infinitely near,

are not base points of |KX + L| and fail to be separated by |KX + L|, then

they lie on an effective curve D, depending on P and Q, satisfying one of the

following:

(a) DL = 0, D2 = −2 or −1;

(b) DL = 1, D2 = −1 or 0;

(c) DL = 2, D2 = 0;

(d) L2 = 9 and L is numerically equivalent to 3D.

A ball quotient cannot contain a curve of geometric genus 0 or 1. By Reider’s

theorem the bicanonical system of a ball quotient is base point free thus defines a

morphism. Let X be an FPP and let

�2,X : X → P
9

be the bicanonical morphism.

Lemma 2.2. Let X be an FPP.

(1) If D is an effective curve on X with D2 = 1, then D is an irreducible curve of

arithmetic genus 3, h0(X,OX(KX −D)) = 0, and h0(X,OX(D)) = 1. In particular

X may contain at most finitely many curves D with D2 = 1. Their number is

bounded by |H1(X,Z)|.
(2) If two different points P and Q on X (possibly infinitely near) are not

separated by �2,X , then there is a curve D with D2 = 1 containing P and

Q such that h0(D,OD((KX −D)|D) = 1 and P +Q is the unique effective divisor

in the linear system of (KX − D)|D. In particular, a curve D with D2 = 1

may contain at most one pair of points (possibly infinitely near) that are not

separated by �2,X . Such a curve D is uniquely determined by P and Q.

(3) The bicanonical map �2,X yields an isomorphism with its image of the

complement U of a finite set of points. The bicanonical image � is a surface

with isolated singularities only and �2,X : X → � is the normalization map.
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Proof. (1) The class of D is a generator of Pic(X) modulo torsion; hence, it is

irreducible: its arithmetic genus p(D) = 3 by adjunction, since 2p(D) − 2 = D2 + KXD =
1 + 3. h0(X, KX − D) = 0 because D is effective and pg(X) = h0(X, KX) = 0. For the last

assertion, if h0(X, D) ≥ 2, then h0(X, 4D) ≥ 5. On the other hand, since 4D − K is ample,

we have by Kodaira vanishing h1(X, 4D) = h2(X, 4D) = 0; hence, by Riemann–Roch,

h0(X, 4D) = 3: a contradiction.

(2) By Reider’s theorem (Theorem 2.1), if the bicanonical system |2KX | does not

separate two points P and Q (possibly infinitely near) then there exists a divisor D

containing both P and Q and such that K ≡ 3D modulo torsion (≡ denotes linear

equivalence, according to the classical notation).

One sees immediately in fact that, again since Pic(X) has rank equal to 1, and its torsion

free part is generated by a divisor L with L2 = 1, the alternatives (a), (b), and (c) in (2)

of Theorem 2.1 are not possible (D2 ≤ 0 contradicts that D is numerically equivalent

to a nontrivial multiple of L). Write then K ≡ 3D + τ for a torsion divisor class τ , and

observe that

2K ≡ K + D + (2D + τ).

By [16] and [12] in view of the exact sequence

0 → IP,QωD(2D + τ) → ωD(2D + τ) → C
2 → 0

it must also hold that

H1(D, IP,QωD(2D + τ)) ∼= C.

Hence, there is an isomorphism IP,Q(2D + τ) ∼= OD; thus,

IP,Q
∼= OD(−2D − τ),

IP,Q is invertible, and P + Q is the unique divisor of a section ∈ H0(OD(2D + τ)) ∼= C.

If P and Q are contained in two different curves D1 and D2, then D1D2 ≥ 2,

which is not possible since the curves D1 and D2 are numerically equivalent and have

self-intersection 1. This proves the uniqueness of such a curve D.

(3) follows from (1) and (2). �

In [24], all possible structures of the quotient surface of an FPP and its minimal

resolution were classified.

Theorem 2.3. [24] Let X be an FPP with a group G acting on it. Then the fixed locus

of any automorphism of G different from the identity consists of three isolated points.

Moreover, the following hold.
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(1) If G = C3, then X/G is a Q-homology projective plane with three singular

points of type 1/3(1, 2) and its minimal resolution is a minimal surface of

general type with pg = 0 and K2 = 3.

(2) If G = C2
3, then X/G is a Q-homology projective plane with four singular

points of type 1/3(1, 2) and its minimal resolution is a minimal surface of

general type with pg = 0 and K2 = 1.

(3) If G = C7, then X/G is a Q-homology projective plane with three singular

points of type 1/7(1, 5) and its minimal resolution is a (2, 3)-, (2, 4)-, or (3, 3)-

elliptic surface.

(4) If G = 7 : 3, then X/G is a Q-homology projective plane with 4 singular points,

where three of them are of type 1/3(1, 2) and one of them is of type 1/7(1, 5),

and its minimal resolution is a (2, 3)-, (2, 4)-, or (3, 3)-elliptic surface.

Here a Q-homology projective plane is a normal projective surface with the same

Betti numbers as P
2
C

(cf. [18, 19]). A normal projective surface with quotient singularities

only is a Q-homology projective plane if its 2nd Betti number is 1 (if the 1st Betti number

were positive, then, since the Picard scheme is compact for a normal surface, looking at

the Albanese map one sees that the Picard number is at least 2). An FPP is a nonsingular

Q-homology projective plane; hence, by the invariance of the class of the canonical

divisor for automorphisms, every quotient is again a Q-homology projective plane.

Lemma 2.4. On an FPP X there is no totally geodesic curve, smooth or singular.

Proof. The proof has the following two steps. We are indebted to Bruno Klingler,

Inkang Kim, and a referee for their precious suggestions.

I) In general, if an arithmetic ball quotient X contains a totally geodesic

(possibly singular) curve Y, then Y is a ball quotient, and we claim that Y

is arithmetic.

This follows from the definition: if 	 < G is an arithmetic lattice (it means

that there exists a number field k such that 	 is commensurable with

G(Ok) < G(k) where Ok is the ring of integers of k), one may assume, up

to finite index, that 	 is contained in G(Ok). If the arithmetic ball quotient X

corresponding to 	 < G contains a totally geodesic space Y corresponding to

	′ < G′ < G, then, since it is totally geodesic, there is an injection from 	′ to 	

(any element in 	′ yields a loop that is represented by a closed geodesic in X,

which is contained in Y since Y is totally geodesic: hence, it is trivial in 	′ if
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it is trivial in 	). Here G is the isometry group of the complex n-ball and G′ is

the isometry group of the complex m-ball with m < n. Hence, 	′ < 	 < G(Ok)

and consequently 	′ < G(Ok)∩ G′ < G′(Ok). Since G′(Ok) gives a finite volume

ball quotient, and so does 	′, it follows that 	′ is a finite index subgroup of

G′(Ok). Hence, 	′ is an arithmetic lattice in G′.
II) We use here a result of Möller and Toledo [33]. We represent the 2-ball as

G/K, where G is the set of R-valued points in a connected semisimple Q-

algebraic group GQ and K is a maximal compact subgroup (then 	 is an

irreducible arithmetic lattice in G).

Then Y is a Shimura curve, corresponding to a Q-algebraic group HQ with a

homomorphism into G
Q

.

Moreover, there is a totally complex quadratic extension l of a totally real

field k and a central division algebra D of degree d = 1 or d = 3 over l with

an involution of the 2nd kind, such that Gk = SU(h), where h is an Hermitian

form on D3/d.

The case d = 1 does not occur for an FPP, as shown by Cartwright and Steger

(see the Addendum of [35]), while in the case d = 3 there are no Shimura

curves: Möller and Toledo show that the cubic division algebra D contains

no proper non commutative subalgebras ([33, p. 901]). �

When the central simple algebra D splits over l (as in the case of the Cartwright–

Steger surface), it is a matrix algebra and the ball quotient always contains a totally

geodesic curve, possibly singular.

Lemma 2.5. Let X be an FPP. If a curve D on X has D2 = 1, then it is a smooth curve of

genus 3.

Proof. For a curve C on a ball quotient Z

3(2g(C′) − 2) ≥ 2KZC,

where C′ is the normalization of C, with equality iff C is totally geodesic [38]. In our case,

since D2 = 1, we have KXD = 3 and pa(D) = 3. By Lemma 2.4 D is not totally geodesic,

so the above inequality implies that g(D′) ≥ 3. �

Remark 2.6. A referee informed us that another proof of Lemma 2.5 was obtained in

[13] (see proof of Proposition 4.2), using the theory of the Toledo invariant [14].
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Lemma 2.7. Let C be a smooth curve on a smooth complex surface X with C2 > 0. Then

the natural restriction map

Tor Pic(X) → Pic(C)

is injective.

Proof. Let τ be a nontrivial torsion line bundle on X. Then it defines an unramified

cover X ′ → X of finite degree, say d > 1. If τ |C is trivial, then C splits into a disjoint union

of curves C1, . . . , Cd in X ′ with C2
i = C2 > 0, contradicting the Hodge index theorem. �

3 Proof of Theorem 1.3

In this section we prove Theorem 1.3.

First, we state a general result on the 1st homology group of a quotient space

Y = X/G.

Recall here (cf. 6.7 of [11]) that, for a Z[G]-module M, the group of coinvariants

MG is the quotient of M by the submodule generated by Im(g−1), for g ∈ G. In particular,

MG is the quotient of M modulo the relations gi(x) ≡ x, for a system of generators

gi of G.

The functor M �→ MG is the same as tensor product with the trivial Z[G]-module

Z, that is, MG = M ⊗Z[G] Z. Recall that tensor product is right exact, and that the left

derived functors are the homology groups Hi(G, M). In particular,

H1(G,Z) = Gab, Hi(G,Z[G]) = 0, ∀i ≥ 1, H0(G,Z[G]) = Z.

Proposition 3.1. Assume that X is a good topological space (arcwise connected and

semilocally 1-connected) and assume that the group G is a properly discontinuous group

of homeomorphisms of X. Let Y = X/G be the quotient space. Then

(I) If G is generated by the stabilizer subgroups Gx, then H1(X/G,Z) is a quotient

of the group of coinvariants H1(X,Z)G,

H1(X,Z)G � H1(X/G,Z).

(II) More generally, if K(X) is the normal subgroup generated by the stabilizer

subgroups Gx, then H1(X/G,Z) is an extension of a quotient of the group of
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coinvariants H1(X,Z)G by the abelianization of G/K(X), that is, the following

sequence is exact:

H1(X,Z)G → H1(X/G,Z) → (G/K(X))ab → 0.

(III) If X is homotopically equivalent to a simplicial complex on which G acts

simplicially, and with only isolated fixed points, then,

the kernel of the homomorphism H1(X,Z)G → H1(X/G,Z) is generated by the

image of a group H1(G, Z0) sitting in an exact sequence:

H2(G,Z) → H1(G, Z0) → H1(G, C0) → H1(G,Z) = Gab,

where H1(G, C0) is the direct sum of groups of the form

H1(G,Z[G/G′]) ∼= (G′)ab,

where G′ is a subgroup of G (here Z[G/G′] is just a module over the group

ring Z[G]).

(IV) In particular, if G is a finite abelian group, G is generated by stabilizers, and

H1(X,Z)G is a torsion group of order relatively prime to |G|, then H1(X,Z)G =
H1(X/G,Z).

Proof. Let p : X̃ → X be the universal cover, π := π1(X), so that X = X̃/π .

The group G (cf. 6.1 of [11]) admits an exact sequence

1 → π → 	 → G → 1,

where 	 acts properly discontinuously on X̃ and Y = X/G = X̃/	.

By the theorem of Armstrong [1, 2] we have that π1(Y) = 	/K, where K is the

subgroup generated by stabilizers 	z, for z ∈ X̃. As π acts freely, 	z maps isomorphically

to the stabilizer Gx, if x = p(z). Indeed, for each z ∈ p−1(x) there is a splitting of Gx, and

changing z only changes 	z up to conjugation by π .

In particular, K maps on to the normal subgroup K(X) of G generated by the

stabilizers Gx, and we have an exact sequence

1 → π/(π ∩ K) ∼= (πK)/K → π1(Y) = 	/K → G/K(X) = 	/(πK) → 1.

Set

H := H1(X,Z) = πab, H ′ := H1(Y,Z) = π1(Y)ab = (	/K)ab = 	/(K[	, 	]);
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hence, an exact sequence

1 → (πK[	, 	])/(K[	, 	]) → H ′ → (G/K(X))ab = 	/(πK[	, 	]) → 1.

The left-hand side equals π/(π ∩ (K[	, 	])) and is clearly a quotient of H = π/[π , π ].

Moreover, for each γ ∈ 	, φ ∈ π , we have that γφγ −1 and φ has the same image in H ′.
So, for each g ∈ G, G acts trivially on the image of H inside the kernel of the surjection

H ′ → (G/K(X))ab. So, we get an exact sequence

HG → H ′ → (G/K(X))ab → 0,

and (I) and (II) are proven.

For (III), observe that H is the 1st homology group of the complex of simplicial

chains in X

C2 → C1 → Z0,

where we take as Z0 the group of degree zero 0-chains.

We hence have several exact sequences, where Zi is the subgroup of i-cycles, and

Bi is the group of i-boundaries:

0 → Z1 → C1 → Z0 → 0,

0 → B1 → Z1 → H → 0,

0 → Z2 → C2 → B1 → 0

Applying the functor of coinvariants we get exact sequences

B1,G → Z1,G → HG → 0,

C2,G → B1,G → 0,

H1(G, Z0) → Z1,G → C1,G → Z0,G → 0.

Denote now by H ′′ the homology of the complex

C2,G → C1,G → Z0,G.

By what we have observed above, H ′′ is a quotient of Z1,G by the subgroup generated by

the image of B1,G and by the image of H1(G, Z0), hence a quotient of HG by the image of

H1(G, Z0).

Now, by our hypothesis, for i ≥ 1, Ci,G = C′
i, the group of simplicial i-chains on

Y = X/G. This is true since G acts freely on i-chains, for i ≥ 1.
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In addition, the 1st homology group H ′ of X/G is the homology of the complex

C′
2 → C′

1 → Z′
0.

Moreover, Z0 → Z′
0 factors through Z0,G; hence, H ′/H ′′ equals the quotient of two

kernels

ker
(
C1,G → Z′

0

)
/ker

(
C1,G → Z0,G

)
,

and we shall now again see that it is isomorphic to (G/K(X))ab. Indeed, if a 1-cycle on

Y maps to zero in Z′
0, then it lifts to a 1-cycle on X with boundary of the form x − g(x).

Adding zero, a path from one vertex to another minus the same path, we can take x

to lie on any fiber over a vertex of Y. In particular, if g ∈ Gx, we get x − g(x) = 0;

hence, similarly, adding a path from x to z, minus its transform via g, we get z − g(z) =
x − g(x) = 0 for each other vertex z. Finally, since z = g(z) ⇒ hz = gh(z) = hg(z) (use the

fact that we work in the group of coinvariants for the 2nd equality), we obtain that our

quotient H ′/H ′′ equals (G/K(X))ab.

Finally, the module C0 is a direct sum M ⊕ M ′, where M is a free module

corresponding to vertices of X on which G acts freely, and M ′ is the direct sum

of modules corresponding to orbits of vertices with a nontrivial stabilizer G′, hence

modules of the form Z[G/G′].
For the former summand we have H1(G, M) = 0 and for the latter the Hochshild–

Lyndon–Serre spectral sequence, if G′ is a normal subgroup, yields

H1

(
G,Z

[
G/G′]) = (

G′)ab .

If G′ is not normal, the same assertion follows from Shapiro’s lemma (see [8, 6.2, p. 73]),

since the Z[G]-module Z[G/G′] is just the representation of G induced from the trivial

representation Z of G′. From the exact sequence

0 → Z0 → C0 → Z → 0

the exact group homology sequence yields an exact sequence

H2(G,Z) → H1(G, Z0) → H1(G, C0) → H1(G,Z) = Gab → Z0,G → C0,G → Z.

(IV) follows easily once we observe that the finite group H2(G,Z) ∼= H2(G,C∗) has

exponent dividing |G| (cf. Theorem 6.14 of [21]). �
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Example 3.2. Let X be a hyperelliptic curve of genus g and G = Z/2 acting via the

hyperelliptic involution, so that X/G = P
1. Here HG = (Z/2)2g, while H1(X/G,Z) =

H1(P1,Z) = 0.

This example shows that the kernel of the homomorphism H1(X,Z)G →
H1(X/G,Z) might be everything (observe that the description of this kernel in III of

Proposition 3.1 is not completely explicit!).

To get an example where the locus of fixed points has complex codimension 2,

consider more generally the product X of two hyperelliptic curves of genera g1 and g2,

where G = Z/2 acts diagonally via the two hyperelliptic involutions. Again the quotient

is simply connected, HG = (Z/2)2g1+2g2 .

If G = 〈g〉 is cyclic, then gi −1 = (g−1)(gi−1 + . . .+1); hence, Im(gi −1) ⊂ Im(g−1)

for all i and, as already mentioned,

MG = Mg := M/Im(g − 1).

Lemma 3.3. (I) If a cyclic group G of order m acts on an abelian group H, and if m is

coprime to the order |h| of every element h ∈ H, then

HG
∼= HG.

(II) If a finite cyclic group G acts on X with only isolated fixed points, G is

generated by the stabilizer subgroups, and H1(X,Z) is finite and has order coprime to

|G|, then

H1(X/G,Z) = H1(X,Z)G = H1(X,Z)G.

Proof. (I) Let g ∈ G be a generator: g has order m. Consider the trace homomorphism

Tr( g) = 1 + g + g2 + ... + gm−1 : H → H. Since

( g − 1)Tr( g) = Tr( g)( g − 1) = gm − 1 = 0

we have

Im(Tr( g)) ⊂ Ker( g − 1) = HG, Im( g − 1) ⊂ Ker(Tr( g)).

We will show that both are equalities under the assumption.

If h ∈ Ker( g − 1) = HG, then, choosing an integer a such that am ≡ 1 mod |h|, we

see that Tr( g)(ah) = mah = h; hence, h ∈ Im(Tr( g)).
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If h ∈ Ker(Tr( g)), then, again by choosing a positive integer a such that am ≡ 1

mod |h|, one has

h = − g(h) − g2(h) − ... − gam−1(h)

= ( g − 1)( g(h) + 2g2(h) + ... + (am − 1)gam−1(h)) − (am − 1)h

= ( g − 1)( g(h) + 2g2(h) + ... + (am − 1)gam−1(h)) ∈ Im(g − 1).

(II) This follows from (I) and Proposition 3.1. �

Corollary 3.4. Let X be an FPP with Aut(X) ∼= C7 : C3. Then

H1(X,Z)C7 ∼= H1(X,Z)C7
∼= H1(X/C7,Z) = π1(X/C7) ∼= 0 or C2.

More precisely, the C7 action on H1(X,Z) fixes no 2-torsion element in the case of

H1(X,Z) ∼= C3
2, C6

2 and only one in the case of H1(X,Z) ∼= C4
2.

Proof. Recall that, by [10], the three pairs of FPPs with Aut(X) ∼= G21 have torsion

groups

H1(X,Z) ∼= C3
2, C4

2, C6
2,

respectively. By Proposition 3.1 and Lemma 3.3

H1(X,Z)C7 ∼= H1(X,Z)C7
∼= H1(X/C7,Z).

By Theorem 2.3, since an (a, b)-elliptic surface has fundamental group isomorphic to

the cyclic group of order gcd(a, b) [15], we see that

π1(X/C7) = π1(X/C7)ab = H1(X/C7,Z)

is of order at most 3, hence either 0 or C2 (this coincides with the computation of

π1(X/C7) in [10].) Since the polynomial x7 −1 in C2[x] is the product of thee prime factors

(x + 1)(x3 + x2 + 1)(x3 + x + 1) we see that any linear action of C7 on a vector space

Cn
2 is a direct sum of subspaces of cardinality 2 or 8. Thus, the C7 action on H1(X,Z)

fixes no 2-torsion element in the case of H1(X,Z) ∼= C3
2, C6

2 and one in the case of

H1(X,Z) ∼= C4
2. �

Remark 3.5. (1) This is no strange. In fact, Aut(C3
2) ∼= GL(3, 2) ∼= PSL(2, 7), a simple

group of order 168 containing a subgroup ∼= G21.
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(2) Corollary 3.4 is a crucial point missing in the proof of the paper by

S.-K. Yeung [A surface of maximal canonical degree, Math. Ann. 368 (2017), 1171-1189],

where the proof of the base point freeness of |KM | is based on his wrong claim that the

C7 action on H1(X,Z) = C4
2 is trivial. Thus, the main result of the paper is not proven at

all.

Lemma 3.6. Let F be a finite abelian group of order not divisible by 9. Suppose that

F admits an order 3 automorphism σ such that the group of coinvariants Fσ
∼= C3 or 0.

Then for every t ∈ F

t + σ(t) + σ 2(t) = 0 in F.

Proof. In the case

0 = Fσ = F/(σ − 1)F

1 − σ is invertible; hence,

0 = σ 3 − 1 = (σ − 1)
(
σ 2 + σ + 1

)
⇒

(
σ 2 + σ + 1

)
= 0.

Note that the action of σ on F is the product of its actions on the p-primary

summands of F.

In the 2nd case Fσ
∼= C3, the previous argument applies for p-primary summands

of F for p �= 3.

For p = 3 clearly σ = 1; hence, (σ 2 + σ + 1) = 3 = 0. �

Now we prove Theorem 1.3.

Suppose that X has no 3-torsion (in H1(X,Z), hence also in Pic(X)). Then KX has a unique

cube root L0. Then L0 is fixed by every automorphism. Let L be an ample line bundle

with L2 = 1. Then L = L0 + t for some torsion line bundle t, and

σ ∗(L0 + t) = L0 + σ ∗(t), σ 2∗(L0 + t) = L0 + σ 2∗(t).

By the above lemma, t + σ ∗(t) + σ 2∗(t) = 0. Thus,

(L0 + t) + σ ∗(L0 + t) + σ 2∗(L0 + t) = 3L0 + (t + σ ∗(t) + σ 2∗(t)) = 3L0 = KX .

If L0 + t is effective, then all the three summands are effective, so is KX , contradicting

pg(X) = 0. Thus, H0(X, L0 + t) = 0.

Suppose that X has nontrivial 3-torsion, so that KX has a cube root L0, but

this is not unique (see Remark under Table 1). In this case it is possible that no such

divisor class L0 is fixed by the order 3 automorphism σ . If σ ∗(L0) = L0, then the previous
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argument shows that H0(X, L0 + t) = 0. If σ ∗(L0) = L0 + t3 for some 3-torsion element t3,

then for any torsion line bundle t

σ ∗(L0 + t) = L0 + t3 + σ ∗(t), σ 2∗(L0 + t) = L0 + 2t3 + σ 2∗(t).

Here σ ∗(t3) = t3, because the 3-adic part of Pic(X) for an FPP X has rank at most 1. By

the above lemma, t + σ ∗(t) + σ 2∗(t) = 0. Thus,

(L0 + t) + σ ∗(L0 + t) + σ 2∗(L0 + t) = 3L0 + 3t3 = KX .

Since KX is not effective, none of the three summands is effective.

4 FPPs with Aut(X) = C2
3 and H1(X,Z) = C14

This is one of the 3 pairs of FPPs with Aut(X) = C2
3. The other two pairs are also listed

in Table 1. Note that the unique 2-torsion element is fixed by every automorphism.

If Aut(X) = C2
3 acts trivially on H1(X,Z), then H1(X,Z)Aut(X) = C14. This group

has order coprime to 3, thus by Proposition 3.1 H1(X/Aut(X),Z) = C14. But X/Aut(X)

has four A2-singularities and its minimal resolution is a numerical Godeaux surface

(a minimal surface of general type with pg = 0 and K2 = 1). This is impossible, as a

numerical Godeaux surface has a torsion group of order ≤ 5. Thus, Aut(X) = C2
3 does not

act trivially on H1(X,Z).

Note that

Aut(H1(X,Z)) ∼= (C2 × C7)∗ ∼= C6.

Thus, we have

Ker(Aut(X) → Aut(H1(X,Z)) ∼= C3.

If σ ∈ Aut(X) = C2
3 acts trivially on H1(X,Z), then by Proposition 3.1 and Lemma 3.3

H1(X/〈σ 〉,Z) = H1(X,Z)σ = H1(X,Z)σ = C14.

If σ ∈ Aut(X) = C2
3 does not act trivially on H1(X,Z), then it fixes the 2-torsion element

and permutes the six 7-torsion elements and the six 14-torsion elements; hence,

H1(X/〈σ 〉,Z) = H1(X,Z)σ = H1(X,Z)σ = C2.

This coincides with the computation of Cartwright and Steger [10]:

π1(X/C3) = C14, S3, C2, C2

for four order 3 subgroups of Aut(X) = C2
3, respectively (see Table 1).
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Since X has no 3-torsion, it has a unique cubic root of KX . Let L0 ∈ Pic(X) be the

unique cubic root of KX .

First, we recall the following vanishing result from ([28, Theorem 0.2 and its

proof]).

Theorem 4.1. [28] Let X be an FPP with Aut(X) ∼= C2
3. Then H0(X, 2L0 + t) = 0 for any

Aut(X)-invariant torsion line bundle t. In particular, H0(X, 2L0) = 0.

Remark 4.2. Among the three pairs of FPPs with Aut(X) ∼= C2
3, only the pair

with H1(X,Z) = C14 has an Aut(X)-invariant nontrivial torsion line bundle, which

corresponds to the unique 2-torsion in H1(X,Z). It follows that for this pair of FPPs,

OX , −(L0 + t2), −2L0 also form an exceptional collection.

Lemma 4.3. For an FPP X with Aut(X) = C2
3 and H1(X,Z) = C14,

H0(X, L0 + t) = 0

for any torsion element t ∈ Pic(X), except possibly for three 14-torsion elements that are

rotated by an order 3 automorphism.

Proof. Suppose that t = t7 is a 7-torsion element. We know that there is an

automorphism σ ∈ Aut(X) such that σ ∗(t) = 2t (by replacing it by σ 2 if σ ∗(t) = 4t).

Thus,

σ ∗(L0 + t) = L0 + 2t, σ 2∗(L0 + t) = L0 + 4t.

Since pg(X) = H0(X, KX) = 0 and

(L0 + t) + (L0 + 2t) + (L0 + 4t) = 3L0 = KX ,

we have H0(X, L0 + t) = 0.

Suppose that t = t2 is the unique 2-torsion element. It is fixed by every

automorphism. Thus,

(L0 + t2) + σ ∗(L0 + t2) + σ 2∗(L0 + t2) = 3(L0 + t2) = KX + t2

and one cannot use the previous argument. But the vanishing H0(X, L0 + t2) = 0 follows

from Theorem 4.1, since 2(L0 + t2) = 2L0 is Aut(X)-invariant.

Suppose that H0(X, L0+t2+t7) �= 0 for some 7-torsion element t7. By Theorem 4.1

we know that there is an automorphism σ ∈ Aut(X) such that σ ∗(t7) = 2t7. Thus

σ ∗(L0 + t2 + t7) = L0 + t2 + 2t7, σ 2∗(L0 + t2 + t7) = L0 + t2 + 4t7
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and these two line bundles are effective. We know that H0(X, 2L0) = 0. Since

(L0 + t2 + at7) + (L0 + t2 + (7 − a)t7) = 2L0,

we have

H0(X, L0 + t2 + 6t7) = H0(X, L0 + t2 + 5t7) = H0(X, L0 + t2 + 3t7) = 0.
�

From now on, assume that H0(X, L0 + t2 + t7) �= 0 for some 7-torsion element t7.

Then

H0(X, L0 + t2 + t7) ∼= C.

Let D1 be the unique effective curve in the linear system, that is,

D1 ≡ L0 + t2 + t7.

Define

D2 = σ ∗D1 ≡ L0 + t2 + 2t7, D3 = σ ∗D2 ≡ L0 + t2 + 4t7.

There is another automorphism ν ∈ Aut(X) acting trivially on H1(X,Z) = C14.

Then

ν∗(M) = M

for any line bundle M. In particular,

ν∗(Di) = Di, i = 1, 2, 3.

By Lemma 2.5, each Di is a smooth curve of genus 3. Note that the intersection number

DiDj = 1, i, j = 1, 2, 3.

Hence, Di and Dj intersect transversally in a point xij. Then D1, D2, and D3 form a triangle

with vertices xij. (If the three curves intersect at a point x, then both σ and ν fix x,

impossible by Theorem 2.3.) We know by Theorem 2.3 that the fixed locus of ν consists

of three isolated points, so we infer that

Fix(ν) = {x12, x23, x31}.

Theorem 4.4. Let X be an FPP with Aut(X) = C2
3 and H1(X,Z) = C14. The bicanonical

map �2,X of X is an embedding.

Proof. If two different points P and Q, with Q possibly infinitely near to P, are not

separated by the bicanonical system, then they must belong to one of the three curves

Di, say D1. We know that P + Q is the unique divisor of H0(D1,OD1
((KX − D1)|D1)). Since
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ν preserves the line bundle KX − D1 and the curve D1, it preserves the divisor P + Q.

Since ν|D1 is of order 3, both P and Q are fixed points of ν|D1. If Q is not infinitely near

to P, then

P + Q = x12 + x13.

Thus, in our previous notation, we should have

OD1
(D2 + D3) ∼= OD1

(x12 + x13) ∼= OD1
(KX − D1);

hence

OD1
(t2) ∼= OD1

(KX − D1 − D2 − D3) ∼= OD1
.

This contradicts however Lemma 2.7.

If Q is infinitely near to P, then P + Q|D1 = 2x12 or P + Q|D1 = 2x13. In the former

case we must have

OD1
(2D2) ∼= OD1

(2x12) ∼= OD1
(KX − D1);

hence

OD1
(t2 − 5t7) ∼= OD1

(KX − D1 − 2D2) ∼= OD1
,

contradicting again Lemma 2.7. The argument in the latter case is identical. �

5 FPPs with H1(X,Z) = C6

Among the 50 pairs of FPPs, exactly three pairs have H1(X,Z) = C6, as listed in

Table 2. Moreover, they all have Aut(X) = C3. Since Aut(H1(X,Z)) ∼= C2 in this case,

the automorphism group acts trivially on H1(X,Z) = C6. Consider the set

L = {L ∈ Pic(X) | L ample with L2 = 1}.
This set has the same cardinality as H1(X,Z) = C6. First, note that Aut(X) may

act nontrivially on the set L even though Aut(X) acts trivially on H1(X,Z) = C6, which is

the set of differences of two elements of L.

Table 2 FPPs with H1(X,Z) = C6

X Aut(X) H1(X,Z) π1(X/C3)

(a=15, p=2, {3}, (D3)3) C3 C6 C6

(C18, p=3, {2}, (dD)3) C3 C6 C6

(C18, p=3, {2}, (d2D)3) C3 C6 C6
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If Aut(X) = C3 acts nontrivially on the set L, then the previous argument

shows that no element of L can be effective; hence, we have the very ampleness of the

bicanonical system.

If Aut(X) acts trivially on the set L, then a similar argument shows that at

most two elements of L can be effective. In this case, if X has only one curve D with

D2 = 1, then Aut(X) = C3 fixes 2 points on D and the bicanonical map embeds away

from the two points, and if X has two curves D1 and D2 with D2
1 = D2

2 = D1D2 = 1, then

Aut(X) = C3 fixes three points on D1∪ D2 and the bicanonical map embeds away from the

three points.

Remark 5.1. The last two pairs in Table 2 have fundamental group that does not lift to

SU(2, 1) by [10], so their canonical classes are not divisible by 3.
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